考虑单向复合材料复杂微观结构的细化单胞模型

张博明, 唐占文, 赵 琳

张博明, 唐占文, 赵 琳. 考虑单向复合材料复杂微观结构的细化单胞模型[J]. 工程力学, 2012, 29(11): 46-052. DOI: 10.6052/j.issn.1000-4750.2011.04.0201
引用本文: 张博明, 唐占文, 赵 琳. 考虑单向复合材料复杂微观结构的细化单胞模型[J]. 工程力学, 2012, 29(11): 46-052. DOI: 10.6052/j.issn.1000-4750.2011.04.0201
ZHANG Bo-ming, TANG Zhan-wen, ZHAO Lin. REFINED GENERALIZED METHOD OF CELLS WITH COMPLEX MICRO-STRUCTURE OF UNIDIRECTIONAL COMPOSITES[J]. Engineering Mechanics, 2012, 29(11): 46-052. DOI: 10.6052/j.issn.1000-4750.2011.04.0201
Citation: ZHANG Bo-ming, TANG Zhan-wen, ZHAO Lin. REFINED GENERALIZED METHOD OF CELLS WITH COMPLEX MICRO-STRUCTURE OF UNIDIRECTIONAL COMPOSITES[J]. Engineering Mechanics, 2012, 29(11): 46-052. DOI: 10.6052/j.issn.1000-4750.2011.04.0201

考虑单向复合材料复杂微观结构的细化单胞模型

基金项目: 国家973项目(2010CB631100)
详细信息
    通讯作者:

    张博明

  • 中图分类号: TB332 | TB330.1

REFINED GENERALIZED METHOD OF CELLS WITH COMPLEX MICRO-STRUCTURE OF UNIDIRECTIONAL COMPOSITES

  • 摘要: 通用单胞模型常被应用在复合材料细观力学分析上。但原始的通用单胞模型存在求解量大、计算效率低的问题。该文对其改进,建立了以子胞界面细观应力为未知量的细化单胞模型。利用该模型研究复杂的微观结构包括纤维截面形状/排列方式,界面相材料属性/几何厚度,夹杂/空隙对单向纤维复合材料宏观弹性常数的影响。通过与其他研究方法和试验数据对比证实了该预测模型具有更高的计算效率,计算精度和更广泛的普适性。该文模型子胞划分更细致,克服了原始通用单胞模型无法分析复杂微观结构的不足。有望将损伤力学引入该模型中建立一个有力的分析工具,来进行复合材料结构宏/细观多尺度损伤力学分析。
    Abstract: A generalized method of cells is often used in the micromechanical analysis of composites. Large number of unknowns and lower computational efficiency are the shortcomings of the original generalized method of cells. Here, the original method is improved by a refined generalized method of cells of which unknowns are subcell tractions in this paper. The influences of fiber shape/arrays, interfacial elastic properties/geometric dimension, inclusion and voids on elastic constants of unidirectional composites are studied by the presented model. Higher computational efficiency, accuracy and universality have been demonstrated in comparison with other methods and experimental data. The presented model has refined discretization, overcoming the shortcoming of an original generalized method of cell that can’t analyze a complex micro-structure. It is expected to provide a powerful tool for the macro/micro multi-scale damage analysis that will be achieved by introducing damage mechanics into the presented model.
  • [1]
    [2] [1] Rajinder P. New models for effective Young’s modulus of particulate composites [J]. Composites B, 2005, 36: 513―523.
    [3] [2] Poutet J, Manzoni D, HageChehade F. The effective mechanical properties of random porous media [J]. Journal of the Mechanics and Physics of So1ids, 1996, 44(10): 1587―1620.
    [4] [3] Tilbrook M T, Moon R, Hoffman M. On the mechanical properties of alumina–epoxy composites with an interpenetrating network structure [J]. Materials Science and Engineering: A, 2005, 393(1/2): 170―178.
    [5] [4] Paley M, Aboudi J. Micromechanical analysis of composites by the generalized cells model [J]. Mechanics of Materials, 1992, 14: 127―139.
    [6] [5] 赵琳, 张博明. 基于单胞解析模型的单向复合材料强度预报方法[J]. 复合材料学报, 2010, 27(5): 86―92.
    [7] Zhao Lin, Zhang Boming. Method for strength prediction of unidirectional composites based on unit cell analytic model [J]. Acta Materiae Compositae Sinica, 2010, 27(5): 86―92. (in Chinese)
    [8] [6] King T R, Blackketter D M, Walrath D E, Adams D F. Micromechanics prediction of the shear strength of carbon fiber/epoxy matrix composites: The influence of the matrix and interface strengths [J]. Journal of Composite Materials, 1992, 4: 558―73.
    [9] [7] Huang Zhengming. Micromechanical prediction of ultimate strength of transversely isotropic fibrous composites [J]. Solids and Structures, 2011, 38: 4147―4172.
    [10] [8] Zhang Boming, Yang Zhong, Sun Xinyang, Tang Zhanwen. A virtual experimental approach to estimate composite mechanical properties: Modeling with an explicit finite element method [J]. Computational Materials Science, 2010, 49: 645―651
    [11] [9] Zhang J, Guo Q P, Huson M. Interphase study of thermoplastic modified epoxy matrix composites: Phase behaviour around a single fibre influenced by heating rate and surface treatment [J]. Composites Part A, 2010, 41(6): 787―794.
    [12] [10] Liu L, Song Y J, Fu H J. The effect of interphase modification on carbon fiber/polyarylacetylene resin composites [J]. Applied Surface Science, 2008, 254(17): 5342―5347.
    [13] [11] Olivier P, Cottu J P, Ferret B. Effects of cure cycle pressure and voids on some mechanical properties of carbon/epoxy laminates [J]. Composites, 1995, 26: 509―515.
    [14] [12] Daniel I M, Lee J W. Progressive transverse cracking of crossply composite laminates [J]. Journal of Composite Materials, 1990, 24: 1225―1243.
    [15] [13] Sun C T, Vaidya R S. Prediction of composite properties from a representative volume element [J]. Composites Science and Technology, 1996, 56: 171―179.
    [16] [14] Chamis C C. Simplified composite micromechanics equations for hygral, thermal and mechanical properties [J]. SAMPE Quarterly, 1984, 4: 14―23.
    [17]  
    [18]
    [19]
    [20]
计量
  • 文章访问数:  685
  • HTML全文浏览量:  12
  • PDF下载量:  207
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-07
  • 修回日期:  2011-07-02
  • 刊出日期:  2012-11-24

目录

    /

    返回文章
    返回