基于应变信号的复合材料层合板低速冲击损伤识别研究

王利恒

王利恒. 基于应变信号的复合材料层合板低速冲击损伤识别研究[J]. 工程力学, 2014, 31(2): 230-236. DOI: 10.6052/j.issn.1000-4750.2012.09.0693
引用本文: 王利恒. 基于应变信号的复合材料层合板低速冲击损伤识别研究[J]. 工程力学, 2014, 31(2): 230-236. DOI: 10.6052/j.issn.1000-4750.2012.09.0693
WANG Li-heng. LOW VELOCITY IMPACT DAMAGE IDENTIFICATION OF COMPOSITE LAMINATE USING DYNAMIC STRAIN SIGNALS[J]. Engineering Mechanics, 2014, 31(2): 230-236. DOI: 10.6052/j.issn.1000-4750.2012.09.0693
Citation: WANG Li-heng. LOW VELOCITY IMPACT DAMAGE IDENTIFICATION OF COMPOSITE LAMINATE USING DYNAMIC STRAIN SIGNALS[J]. Engineering Mechanics, 2014, 31(2): 230-236. DOI: 10.6052/j.issn.1000-4750.2012.09.0693

基于应变信号的复合材料层合板低速冲击损伤识别研究

基金项目: 航空科学基金项目(2009ZD44006)
详细信息
    通讯作者:

    王利恒(1972―), 男, 内蒙古人, 高工, 博士, 从事结构健康监测研究(E-mail: walihe@hotmail.com).

  • 中图分类号: TU599;V214.8;V414.8

LOW VELOCITY IMPACT DAMAGE IDENTIFICATION OF COMPOSITE LAMINATE USING DYNAMIC STRAIN SIGNALS

  • 摘要: 为了进行复合材料层合板的冲击损伤识别研究, 设计了由小到大的14个等级的冲击能量, 对应由小到大的冲击损伤, 其中最小能量的冲击没有造成损伤, 最大能量的冲击造成穿透复合材料板的损伤。应用冲击过程中测试得到的应变响应进行损伤识别。基于冲击过程中获得的脉冲应变信号, 提出了10个新的冲击损伤识别指标:脉冲上升时间、下降时间、总时间、上升时间比下降时间、下降时间比上升时间;脉冲上升面积、下降面积、总面积、上升面积与下降面积之比、下降面积与上升面积之比。将提出的10个新冲击损伤识别指标与冲击能量的关系进行了对比研究。研究表明:脉冲下降时间、脉冲总时间、脉冲下降面积、脉冲总面积与冲击能量之间的关系大体上都是单调的, 这4个指标适合0.8J/mm到6.67J/mm的大范围的冲击损伤程度识别, 其余6个指标在一定的冲击能量范围内可以识别冲击损伤程度。应用脉冲下降面积、脉冲总面积指标进行了冲击定位识别研究, 研究表明, 这两个指标也可以识别冲击损伤的位置。
    Abstract: Fourteen levels of impact energy were designed in order to identify the damages of composite laminates. Corresponding to the minimum level of impact energy, composite laminates were intact. Corresponding to the maximum level of impact energy, composite laminates were penetrated through. Strain responses during the impacts were used to detect impulse damages of composite laminate specimens. Based on the collected impulse strain signals under the impacts, the following ten new impact damage indexes are suggested. They are rising shock duration (RSD, the interval from the starting time to peak time of the impact), descending shock duration (DSD, the interval from the peak time to the end time of the impact), shock duration (SD, the interval from the starting time to the end time of the impact), the ratio of the RSD to the DSD, the ratio of the DSD to the RSD, rising area (RA, the integral of the impulse strain response from the starting time to the peak time of the shock), descending area (DA, the integral of the impulse strain response from the peak time to the end time of the shock), total area (TA, the integral of the impulse strain response from the starting time to the end time of the shock), the ratio of the RA to the DA, the ratio of the DA to the RA. The relationship between the ten damage indexes and the impact energies was researched. The results indicate that such indexes as the DSD, the SD, the DA and the TA vary monotonically, depending on the increasing impact energies on the whole. Thusly, the four damage indexes are suitable for identifying the impact energies within the range from 0.8J/mm to 6.67J/mm. The six rest damage indexes can identify impact damage quantification within some shock energy range. The results also show that the DA and TA can also be used to identify the impact location.
  • [1] 程小全, 寇长河, 郦正能. 低速冲击后复合材料层合板的压缩破坏行为[J]. 复合材料学报, 2001, 18(1): 115―119.
    [2] Cheng Xiaoquan, Kou Changhe, Li Zhengneng. Compressive failure behavior of composite laminates after low velocity impact [J]. Acta Materiae Compositae Sinica, 2001, 18(1): 115―119. (in Chinese)
    [3] [2]程小全, 郦正能. 复合材料层合板低速冲击后压缩的损伤累积模型[J]. 应用数学和力学, 2005, 26(5): 569―576.
    [4] Cheng Xiaoquan, Li Zhengneng. Damage progressive model of compression of compositelaminates after low velocity impact [J]. Applied Mathematics and Mechanics, 2005, 26(5): 569―576. (in Chinese)
    [5] [3]程小全, 吴学仁. 复合材料层合板低速冲击损伤容限的改进方法和影响因素[J]. 高分子材料科学与工程, 2002, 18(3): 20―25.
    [6] Cheng Xiaoquan, Wu Xueren. Methods for improving damage tolerance of composite laminates after low velocity impact and their influence factors [J]. Polymer Materials Science and Engineering, 2002, 18(3): 20―25. (in Chinese)
    [7] [4]程小全, 张子龙, 吴学仁. 小尺寸试件层合板低速冲击后剩余压缩强度[J]. 复合材料学报, 2002, 19(6): 8―12.
    [8] Cheng Xiaoquan, Zhang Zilong, Wu Xueren. Post-impact compressive strength of small composite laminate specimens [J]. Acta Materiae Compositae Sinica, 2002, 19(6): 8―12. (in Chinese)
    [9] [5]林智育, 许希武. 含冲击损伤复合材料加筋层板压缩剩余强度[J]. 航空学报, 2009, 30(1): 56―61.
    [10] Lin Zhiyu, Xu Xiwu. Residual compressive strength of stiffened composite laminates with impact damage [J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(1): 56―61. (in Chinese)
    [11] [6]Hanno Niemann, Joseph Morlier, Amir Shahdin, Yves Gourinat. Damage localization using experimental modal parameters and topology optimization [J]. Mechanical Systems and Signal Processing, 2010, 24: 636―652.
    [12] [7]刘福林, 闫维明, 何浩祥, 王卓. 基于Zernike矩的网壳结构的振型表征及损伤识别[J]. 工程力学, 2013, 30(8): 1―9.
    [13] Liu Fulin, Yan Weiming, He Haoxiang, Wang Zhuo. Mode shape characterization and damage detection in latticed shell structures based on Zernike moments [J]. Engineering Mechanics, 2013, 30(8): 1―9. (in Chinese)
    [14] [8]Grouve W J B, Warnet L L, de Boer A, Akkerman R, Vlekken J. Delamination detection with fibre Bragg gratings based on dynamic behavior [J]. Compos Sci Technol, 2008, 68(12): 2418―2424.
    [15] [9]Curadelli R O, Riera J D, Ambrosini D, Amani M G. Damage detection by means of structural damping identification [J]. Engineering Structures, 2008, 30: 3497―3504.
    [16] [10]Pizhong Qiao, Maosen Cao. Waveform fractal dimension for mode shape-based damage identification of beam-type structures [J]. International Journal of Solids and Structures, 2008, 45: 5946―5961.
    [17] [11]Maosen Cao, PizhongQiao. Novel Laplacian scheme and multiresolution modal curvatures for structural damage identification [J]. Mechanical Systems and Signal Processing, 2009, 23: 1223―1242.
    [18] [12]Manoj Kumar, Shenoi R A, Cox S J. Experimental validation of modal strain energies based damage identification method for a composite sandwich beam [J]. Composites Science and Technology, 2009, 69: 1635―1643.
    [19] [13]Edwin Reynders, Guido De Roeck. A local flexibility method for vibration-based damage localization and quantification [J]. Journal of Sound and Vibration, 2010, 329: 2367―2383.
    [20] [14]Maeck J, DeRoeck G. Dynamic bending and torsion stiffness derivation from modal curvatures and torsion rates [J]. Journal of Sound and Vibration 1999, 225: 153―170.
    [21] [15]王利恒, 周锡元, 阎维明. 用锤击试验反应最大值监测钢筋混凝土简支桥梁结构损伤程度的试验研究[J]. 振动与冲击, 2006, 25(1): 90―94.
    [22] Wang Liheng, Zhou Xiyuan, Yan Weiming. Experimental studies on monitoring reinforced concrete beamps damage degree using responses maximums in impact excitation vibration tests [J]. Journal of Vibration and Shock, 2006, 25(1): 90―94. (in Chinese)
    [23] [16]Liheng Wang, Xiyuan Zhou, He Liu, Weiming Yan. Damage detection of RC beams based on experiment and analysis of nonlinear dynamic characteristics [J]. Constructions and Building Materials, 2012, 29: 420―427.
    [24] [17]Ning Hu, Takahito Shimomukai, Cheng Yan, Hisao Fukunaga. Identification of delamination position in cross-ply laminatedcomposite beams using S0 Lamb mode [J]. Composites Science and Technology, 2008, 68: 1548―1554.
    [25] [18]党晓娟, 杨智春, 谭光辉, 王乐. 基于互相关函数幅值向量的复合材料层合板损伤的统计检测[J]. 工程力学, 2009, 26(3): 218―223, 256.
    [26] Dang Xiaojuan, Yang Zhichun, Tan Guanghui, Wang Le. Statistic detection for composite laminate damage by application of correlation function amplitude vector method [J]. Engineering Mechanics, 2009, 26(3): 218―223, 256. (in Chinese)
    [27] [19]于哲峰, 杨智春. 基于互相关函数幅值向量的结构损伤定位方法研究[J]. 振动与冲击, 2006, 25(3): 77―80.
    [28] Yu Zhefeng, Yang Zhichun. Structural damage detection with random excitation and correlation function amplitude vector [J]. Journal of Vibration and Shock, 2006, 25(3): 77―80. (in Chinese)
    [29] [20]张慕宇, 杨智春, 王乐, 丁燕. 复合材料梁结构损伤定位的无参考点互相关分析方法[J]. 工程力学, 2011, 28(11): 166―169.
    [30] Zhang Muyu, Yang Zhichun, Wang Le, Ding Yan. Damage locating for composite beam structure by cross correlation analysis without reference node [J]. Engineering Mechanics, 2011, 28(11): 166―169. (in Chinese)
    [31] [21]郭杏林, 高海洋, 王盛辉. 一种基于频率响应曲率的损伤检测多步判定方法[J]. 工程力学, 2012, 29(7): 56―62, 83.
    [32] Guo Xinglin, Gao Haiyang, Wang Shenghui. A multi-step decision method for damage detection based on frequency response curvature [J]. Engineering Mechanics, 2012, 29(7): 56―62, 83. (in Chinese)
    [33] [22]侯吉林, 欧进萍, Łukasz Jankowski. 约束子结构损伤识别的时序方法研究与试验[J]. 工程力学, 2013, 30(4): 129―135.
    [34] Hou Jilin, Ou Jinping, Łukasz Jankowski. The experiment of substructure isolation and Identification using local time series [J]. Engineering Mechanics, 2013, 30(4): 129―135. (in Chinese)
    [35] [23]王利恒. 复合层合板低速冲击应变测试及其状态监测[J]. 压电与声光, 2012, 34(4): 509―514.
    [36] Wang Liheng. Study on low-velocity impact strain measurement of composite laminate plate and its health monitoring using fiber bragg grating sensors [J]. Piezoelectrics & Acoustooptics, 2012, 34(4): 509―514. (in Chinese)
  • 期刊类型引用(5)

    1. 邹云峰,卢玄东,阳劲松,周帅,何旭辉. 基于模态综合法和模态叠加法的密集模态结构响应重构. 工程力学. 2023(03): 54-64 . 本站查看
    2. 周星宇. 在线监测系统在危重桥梁运维的应用. 价值工程. 2023(14): 125-127 . 百度学术
    3. 邹云峰,卢玄东,阳劲松,何旭辉. 基于应变模态响应重构的损伤识别方法. 工程力学. 2022(09): 225-233 . 本站查看
    4. 杨振伟,周广东,伊廷华,李宏男. 基于分级免疫萤火虫算法的桥梁振动传感器优化布置研究. 工程力学. 2019(03): 63-70 . 本站查看
    5. 任鹏,周智,白石,欧进萍. 桁架结构疲劳监测的应变响应估计方法研究. 工程力学. 2018(09): 114-125 . 本站查看

    其他类型引用(6)

计量
  • 文章访问数:  303
  • HTML全文浏览量:  24
  • PDF下载量:  91
  • 被引次数: 11
出版历程
  • 收稿日期:  2012-09-19
  • 刊出日期:  2014-02-24

目录

    /

    返回文章
    返回