EXPERIMENTAL RESEARCH AND ANALYSIS ON MECHANICAL PROPERTIES OF CHOPPED BASALT FIBER REINFORCED CONCRETE
-
摘要: 为了研究短切玄武岩纤维掺量变化对混凝土基本力学性能的影响,对6种不同体积掺量的短切玄武岩纤维混凝土(BFRC)分别进行立方体抗压、轴心抗压、劈裂抗拉、抗折试验;基于试验结果,通过BP(Back Propagation)神经网路强度预测模型的构建,对附加纤维掺量的混凝土进行强度训练及预测。试验实测数据表明:掺入短切玄武岩纤维对混凝土早期抗压强度的发展有着延缓作用;当纤维掺量为0.1%时,抗压强度达到峰值。随着纤维掺量的增加,劈拉强度增幅较大,抗折强度保持上升趋势。通过BP神经网络的训练及发展趋势预测,结果表明:当纤维体积掺量为0.1%时,抗压强度达到最大值;劈拉强度与抗折强度则随着纤维掺量的增加而持续增大。基于试验数据及预测结果,得出短切玄武岩纤维的最佳体积掺量。Abstract: In order to study the influence of the basic mechanical properties of chopped Basalt fiber reinforced concrete (BFRC), the cubic compressive strength, axial compression strength, split tensile strength, flexural strength are tested with 6 different volume contents. On the basis of the results, the strength of the additional fiber content of concrete is trained and predicted through a BP (Back Propagation) neural-network prediction model. The results show that chopped basalt fiber in concrete can delay the early strength of concrete. The compressive strength reaches a peak value with fiber dosage of 0.1%. The split tensile strength increases significantly, the flexural strength shows an upward trend with fiber content increase. The cubic compressive strength reaches the maximal increase with 0.1% by a BP neural network model. The split tensile strength and flexural strength continue to enhance with increasing fiber content. The best cubic content of chopped basalt fiber is obtained from the test results.
-
Keywords:
- basalt fiber /
- concrete /
- mechanical properties /
- fiber dosage /
- BP network
-
-
[1] 冯乃谦. 高性能混凝土结构[M]. 北京: 机械工业出版社, 2003: 23―28.
Feng Naiqian. High-performance concrete structure [M]. Beijing: Mechanical Industry Press, 2003: 23―28. (in Chinese)[2] Dick A Hordijk. Interaction between research codes and applications [J]. Innovations in Concrete Technology, 2007, Part(I): 334―338. [3] Wei Bin, Cao Hailin, Song Shenhua. Environmental resistance and mechanical performance of basalt and glass fibers [J]. Environmental Materials Science and Engineering, 2010, 527: 4708―4715. [4] Higashiyama H, Banthia N. Correlating flexural and shear toughness of lightweight fiber-reinforced concrete [J]. ACI Materials Journal, 2008, 105(3): 251―257. [5] Ding Y, Liu S. The investigation on the workability of fiber cocktail reinforced self-compacting high performance concrete [J]. Construction and Building Materials, 2008, 22: 1462―1470. [6] Hemant B D, Mo Y L, Thomas T, John Vogel. Fresh and hardened properties of self-consolidating fiber-reinforced concrete [J]. ACI Materials Journal, 2007, 104(5): 491―500. [7] CECS13:2009, 纤维混凝土试验方法标准[S]. 北京: 中国计划出版社, 2010: 35―38.
CECS13:2009, The steel fiber concrete test method [S]. Beijing: China Plans Press, 2010: 35―38. (in Chinese)[8] 黄承逵. 纤维混凝土结构[M]. 北京: 机械工业出版社, 2004: 62―64.
Huang Chengkui. Fiber reinforced concrete structures [M]. Beijing: Publisher of Mechanical Industry, 2004: 62―64. (in Chinese)[9] 李为民, 许金余. 玄武岩纤维对混凝土的增强和增韧效应[J]. 硅酸盐学报, 2008, 36(4): 476―486.
Li Weimin, Xu Jinyu. The enhancement of basalt fiber reinforced concrete and toughening effect [J]. Portland, 2008, 36(4): 476―486. (in Chinese)[10] Pavlovski D, Mislavsky B, Antonnov A. CNG cylinder manufacturers test basalt fiber [J]. Reinforced. Plastics, 2007, 84(1): 40―60. [11] Dmitri Pavlovski, Boris Mislavsky, Andrey Antonov. CNG cylinder manufacturers test basalt fiber [J]. Reinforced. Plastics, 2007, 51(4): 36―39.
计量
- 文章访问数: 558
- HTML全文浏览量: 72
- PDF下载量: 140