考虑弹性边界曲梁模型的覆冰输电线舞动分析

霍涛, 晏致涛, 李正良, 颜志淼

霍涛, 晏致涛, 李正良, 颜志淼. 考虑弹性边界曲梁模型的覆冰输电线舞动分析[J]. 工程力学, 2015, 32(1): 137-144. DOI: 10.6052/j.issn.1000-4750.2013.07.0692
引用本文: 霍涛, 晏致涛, 李正良, 颜志淼. 考虑弹性边界曲梁模型的覆冰输电线舞动分析[J]. 工程力学, 2015, 32(1): 137-144. DOI: 10.6052/j.issn.1000-4750.2013.07.0692
HUO Tao, YAN Zhi-tao, LI Zheng-liang, YAN Zhi-miao. MULTI-SCALE METHOD GALLOPING ANALYSIS OF ICED TRANSMISSION LINES BASED ON CURVED-BEAM MODEL CONSIDERING ELASTIC BOUNDARY CONDITIONS[J]. Engineering Mechanics, 2015, 32(1): 137-144. DOI: 10.6052/j.issn.1000-4750.2013.07.0692
Citation: HUO Tao, YAN Zhi-tao, LI Zheng-liang, YAN Zhi-miao. MULTI-SCALE METHOD GALLOPING ANALYSIS OF ICED TRANSMISSION LINES BASED ON CURVED-BEAM MODEL CONSIDERING ELASTIC BOUNDARY CONDITIONS[J]. Engineering Mechanics, 2015, 32(1): 137-144. DOI: 10.6052/j.issn.1000-4750.2013.07.0692

考虑弹性边界曲梁模型的覆冰输电线舞动分析

基金项目: 国家自然科学基金项目(51178489)
详细信息
    作者简介:

    霍涛(1986-),男,山东临沂人,硕士,主要从事结构工程研究(E-mail:wwwhuotao@sina.com);李正良(1963-),男,江苏江阴人,教授,博士,主要从事工程力学研究(E-mail:lizhengl@hotmail.com);顔志淼(1986-),男,浙江台州人,博士生,主要从事结构工程研究(E-mail:zhimiaoy@gmail.com).

    通讯作者:

    晏致涛(1978-),男,江西南昌人,教授,博士,主要从事结构工程研究(E-mail:yanzhitao@cqu.edu.cn).

  • 中图分类号: TB122; TM75

MULTI-SCALE METHOD GALLOPING ANALYSIS OF ICED TRANSMISSION LINES BASED ON CURVED-BEAM MODEL CONSIDERING ELASTIC BOUNDARY CONDITIONS

  • 摘要: 采用解析法求解覆冰输电线考虑弹性边界的曲梁舞动模型有助于深入理解舞动发生机理。根据扭转向频率特性将三自由度舞动模型简化成更加适用于解析法求解的两自由度舞动模型,然后利用多尺度法分别推导出了1∶1和2∶1内共振情况下的简化幅值方程。接着考察了自由度缩减方法差异引起的轴向模态函数变化和弹性边界对舞动分岔和稳定、舞动幅值和临界风速的影响。结果显示,轴向模态函数的变化对1∶1内共振情况下分岔和稳定、舞动幅值和临界风速的影响较小,对2∶1内共振情况下相应值影响较大。当考虑截面偏心时,1∶1内共振条件下,弹性边界使发生不稳定舞动的风速范围减小。覆冰导线在弹性边界条件下的位移幅值相应减小,下临界风速增大,上临界风速相应减小,舞动风速范围减小。
    Abstract: An analytical approach to solving the galloping model for iced transmission lines based on curved-beam theory and considering elastic boundary condition was developed and can contribute to understanding the galloping mechanism. A two-degree-of-freedom galloping model is reduced from a three-degree-of-freedom galloping model according to the frequency characteristic of rotational direction, then the multi-scale method was used to deduce the 1:1 and 2:1 internal resonance simplified amplitude equations. Then, the effects of variation in the axial model function brought about by the difference between DOF reduction methods and the elastic boundary condition on bifurcation and stability, amplitudes, and galloping critical wind velocity were identified. Results indicate that the impact of variation of the axial model function on the galloping bifurcation and stability, galloping amplitudes and critical wind velocity is slight in the 1:1 internal resonance case and, for corresponding parameters, comparatively great in the 2:1 internal resonance case, especially when not considering the eccentricity of the cross-section. When considering the eccentricity of cross-section in the 1:1 internal resonance case, unstable galloping wind velocity ranges brought about by the elastic boundary condition decrease. The influences of the elastic boundary condition on the galloping amplitudes and critical wind velocity are distinctive; the corresponding displacement amplitudes of the iced transmission line and the supercritical wind velocity decrease, the critical wind velocity increases, and the galloping wind velocity range lessens under the elastic boundary condition.
  • [1] 郭应龙, 李国兴, 尤传永. 输电线路舞动[M]. 北京: 中国电力出版社, 2003: 5―14.
    Guo Yinglong, Li Guoxing, You Chuanyong. Transmission line galloping [M]. Beijing: China Electric Power Press, 2003: 5―14. (in Chinese)
    [2] 王昕, 楼文娟. 覆冰导线舞动数值解及影响因素分析[J]. 工程力学, 2010, 27(增刊): 290―294. Wang Xin, Lou Wenjuan. Galloping numerical approach and influencing factors analysis of the iced transmission line [J]. Engineering Mechanics, 2010, 27(Suppl): 290―294. (in Chinese)
    [3] 晏致涛, 黄静文, 李正良. 基于结点6自由度的分裂导线有限元模型[J]. 工程力学, 2012, 29(8): 325―332. Yan Zhitao, Huang Jingwen, Li Zhengliang. Finite element model of bundle lines based on 6-DOF node [J]. Engineering Mechanics, 2012, 29(8): 325―332. (in Chinese)
    [4] Gawronski K E. Nonlinear galloping of bundle-conduct or transmission lines [D]. Potsdam, New York: Clarkson College of Technology, 1977.
    [5] White W N. An analysis of the influence of support stiffness on transmission line galloping amplitudes [D]. New Orleans: Tulane University, 1985.
    [6] Lee J C. Suppression of transmission line galloping by support compliance design [D]. Thesis. Tulane University, 1989.
    [7] Yu P, Desai Y M, Shah A H. Three-degrees-of-freedom model for galloping, Part I: Formulation [J]. Journal of Engineering Mechanics-ASCE, 1993, 119(12): 2404―2425.
    [8] Yu P, Desai Y M, Shah A H. Three-degree-of freedom model for galloping, Part II: Solutions and applications [J]. Journal of Engineering Mechanics-ASCE, 1993, 119(12): 2426―2448.
    [9] Luongo A, Zulli D, Piccardo G. A Linear curved-beam model for the analysis of galloping in suspended cables [J]. Journal of Mechanics of Materials and Structures, 2007, 2(4): 675―694.
    [10] Luongo A, Zulli D, Piccardo G. Analytical and numerical approaches to nonlinear galloping of internally resonant suspended cables [J]. Journal of Sound and Vibration, 2008, 315: 375―393.
    [11] Luongo A, Zulli D, Piccardo G. On the effect of twist angle on nonlinear galloping of cables [J]. Computers and Structures, 2009, 87(15): 1003―1014.
    [12] Yan Zhimiao, Yan Zhitao, Li Zhengliang et al. Nonlinear galloping of internally resonant iced transmission lines considering eccentricity [J]. Journal of Sound and Vibration. 2012, 331(15): 3599―3616.
    [13] 霍涛, 晏致涛, 李正良, 等. 考虑弹性边界条件曲梁模型的覆冰输电线舞动 [J]. 振动与冲击, 2013, 32(21): 85―91.
    Huo Tao, Yan Zhitao, Li Zhengliang, et al. Galloping curved-beam model of iced transmission line considering elastic boundary condition [J]. Journal of Vibration and Shock, 2013, 32(21): 85―91. (in Chinese)
    [14] Irvine H M. Cable Structure [M]. The MIT Press: Cambridge. 1981: 90―99.
    [15] Luongo A, Egidio A Di, Paolone A. On the proper form of the amplitude modulation equations of resonant systems [J]. Nonlinear Dynamics, 2002, 27(3): 237―254.
    [16] 霍涛. 考虑弹性边界条件曲梁模型的覆冰导线舞动多 尺度法分析[D]. 重庆: 重庆大学, 2013.
    Huo Tao. Multi-scale method galloping analysis of the iced transmission line based on curved-beam model and considering elastic boundary condition [D]. Chongqing: Chongqing University, 2013. (in Chinese)
  • 期刊类型引用(6)

    1. 谢献忠,张淳淇,林文欣,彭剑. 输电线路共振舞动机理试验研究. 工程力学. 2023(10): 71-80 . 本站查看
    2. 霍冰,刘习军,张锐. 高阶扭转模态耦合下覆冰导线的稳定性和影响因素分析. 工程力学. 2020(02): 241-249 . 本站查看
    3. 陈浩,何晓凤,王丙兰,李哲. 基于集合预报的两种输电线路舞动概率预测方法. 科学技术与工程. 2020(34): 14078-14084 . 百度学术
    4. 张志强,黄增浩. 配网线路覆冰断线力学特性及加固措施分析. 电力科学与工程. 2019(03): 52-58 . 百度学术
    5. 晏致涛,黄珏,李清,李梦丽,杨晓辉. 真型大跨输电线路的舞动模拟与失谐控制. 四川建筑科学研究. 2019(05): 52-57 . 百度学术
    6. 谢献忠,胡霞,彭剑. 多档输电线非线性建模及面内自由振动分析. 应用力学学报. 2017(06): 1097-1101+1220 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  253
  • HTML全文浏览量:  13
  • PDF下载量:  106
  • 被引次数: 13
出版历程
  • 收稿日期:  2013-07-28
  • 修回日期:  2014-03-16
  • 刊出日期:  2015-01-24

目录

    /

    返回文章
    返回