一般线性粘弹性阻尼器耗能结构瞬态响应的非正交振型叠加精确解

李创第, 李暾, 葛新广, 邹万杰

李创第, 李暾, 葛新广, 邹万杰. 一般线性粘弹性阻尼器耗能结构瞬态响应的非正交振型叠加精确解[J]. 工程力学, 2015, 32(11): 140-149. DOI: 10.6052/j.issn.1000-4750.2014.04.0296
引用本文: 李创第, 李暾, 葛新广, 邹万杰. 一般线性粘弹性阻尼器耗能结构瞬态响应的非正交振型叠加精确解[J]. 工程力学, 2015, 32(11): 140-149. DOI: 10.6052/j.issn.1000-4750.2014.04.0296
LI Chuang-di, LI Tun, GE Xin-guang, ZOU Wan-jie. EXACT NON-ORTHOGONAL MODAL SUPERPOSITION SOLUTIONS OF TRANSIENT RESPONSE OF MDOF DISSIPATION STRUCTURES WITH GENERAL LINEAR VISCOELASTIC DAMPERS[J]. Engineering Mechanics, 2015, 32(11): 140-149. DOI: 10.6052/j.issn.1000-4750.2014.04.0296
Citation: LI Chuang-di, LI Tun, GE Xin-guang, ZOU Wan-jie. EXACT NON-ORTHOGONAL MODAL SUPERPOSITION SOLUTIONS OF TRANSIENT RESPONSE OF MDOF DISSIPATION STRUCTURES WITH GENERAL LINEAR VISCOELASTIC DAMPERS[J]. Engineering Mechanics, 2015, 32(11): 140-149. DOI: 10.6052/j.issn.1000-4750.2014.04.0296

一般线性粘弹性阻尼器耗能结构瞬态响应的非正交振型叠加精确解

基金项目: 国家自然科学基金项目(51468005,51368008); 广西自然科学基金项目(2014GXNSFAA118315); 广西科技大学创新团队支持计划项目
详细信息
    作者简介:

    李 暾(1973―),男,广西柳州人,副教授,博士,从事结构抗风、抗震研究(E-mail: leetun1973@163.com); 葛新广(1977―),男,安徽亳州人,讲师,硕士,从事结构抗震研究(E-mail: gxgzlr.2008@163.com); 邹万杰(1974―),男,广西柳州人,副教授,博士,从事结构抗震研究(E-mail: 705450818@qq.com).

    通讯作者:

    李创第(1964―),男,广西柳州人,教授,博士,从事结构抗震研究(E-mail: lichuangdi1964@163.com).

EXACT NON-ORTHOGONAL MODAL SUPERPOSITION SOLUTIONS OF TRANSIENT RESPONSE OF MDOF DISSIPATION STRUCTURES WITH GENERAL LINEAR VISCOELASTIC DAMPERS

  • 摘要: 对一般线性粘弹性阻尼器(含线性橡胶隔震支座)耗能结构的非正交振型叠加精确解法进行了系统研究。首先采用最一般的线性粘弹性阻尼器的积分型精确分析模型,用微分积分方程组实现一般粘弹性阻尼器耗能结构的时域非扩阶精确建模;然后采用传递矩阵法,直接在耗能结构原始空间上获得了一般线性粘弹性耗能变频结构在任意激励和非零初始条件下位移与速度时域瞬态响应的非正交振型叠加精确解;通过与3种典型结构的对比分析,验证了该精确解的正确性、简易性和普适性。该非扩阶精确解具有明确的物理意义,可视为现有比例粘滞阻尼定常结构的经典正交振型叠加精确解在一般线性粘弹性阻尼耗能变频结构的推广,能从本质上精确揭示耗能结构的振动机理,即尽管耗能结构的振型不具有正交性,但耗能结构响应仍然可精确分解为各振型响应的线性组合。此振动机理将为建立耗能结构精确的振型分解反应谱法提供分析路径,同时可将现有用于一般粘滞阻尼定常结构的参数识别、动力修改、最优控制及优化设计等方法推广到一般粘弹性阻尼变频非定常结构。
    Abstract: The exact non-orthogonal modal superposition solutions of transient response of MDOF dissipation structures with general linear viscoelastic dampers including elastomeric isolators are studied systematically. By using the general integral models of viscoelastic dampers, which are the most general exact models of linear viscoelastic dampers, the exact dynamic integral-differential response equations in original structural space for MDOF dissipation structures with general linear viscoelastic dampers are established. Then, by using transfer matrix method, the exact non-orthogonal modal superposition solutions in original structural space for displacement and velocity transient response of MDOF dissipation structures with general linear viscoelastic dampers due to arbitrary exterior forcing loadings and initial conditions are obtained. It is verified that these exact solutions are correct, general, simple, direct, and provide better physical insights through solutions in comparison with three kinds of more general typical dissipation structures. These exact solutions in original structural space are similar to the classical modal superposition results for proportionally damped structures usually obtained using the mode-orthogonality relationships, and can exactly discover the vibration characteristics of viscoelastic dissipation structures, namely: though the dissipation structural modes are not orthogonal, the dynamic equations can not be decoupled by using structural modes, the structural transient response can be exactly expressed in terms of a superposition of individual modal response. Therefore, by using above characteristics, it may be possible to extend the existing modal superposition response spectrum method, structural identification, model updating, optimization, and control algorithms available for viscously damped structures to general viscoelastically damped structures.
  • [1] GB 50011-2010, 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010: 35―40. GB 50011-2010, Seismic design of buildings [S]. Beijing: China Building Industry Press, 2010: 35―40. (in Chinese)
    [2] Soong T T, Dargush G F. Passive energy dissipation systems in structural engineering [M]. England: John Wiley and Ltd, 1997: 128―143.
    [3] Christopoulos C, Filiatrult A. Principle of passive supplemental damping and seismic isolation [M]. Pavia, Italy: IUSS Press, 2006: 170―190.
    [4] 周云. 粘弹性阻尼减震结构设计[M]. 武汉: 武汉理工大学出版社, 2006: 116―128. Zhou Yun. Viscoelastic damping structure design [M]. Wuhan: Wuhan University of Technology Press, 2006: 116―128. (in Chinese)
    [5] Koh C G, Kelly J M. Application of fractional derivatives to seismic analysis of base-isolated models [J]. Earthquake Engineering and Structural Dynamics, 1990, 19: 229―241.
    [6] Hwang J S, Ku S W. Analytical modeling of high damping rubber bearings [J]. Journal of Structural Engineering, 1997, 123(8): 1029―1036.
    [7] 国家自然科学基金委员会工程与材料科学部. 学科发展战略研究报告-建筑、环境与土木工程II(土木工程卷): 工程结构的振动控制理论及其应用(瞿伟廉, 吴斌, 李爱群执笔) [M]. 北京: 科学出版社, 2006: 456―475. National Natural Science Foundation of Engineering and Materials Science Department. Disciplinary development strategy research report — Structure, Environmental and Civil Engineering (Civil Engineering Volume): Vibration control engineering structure theory and its applications (Qu Weilian, Wu Bin, Li Aiqun authored) [M]. Beijing: Science Press, 2006: 456―475. (in Chinese)
    [8] Johnson C D. Kienhola D A. Finite element prediction of damping in structures with constained viscoelastic layers [J]. AIAA Journal, 1982, 20(9): 1284―1290.
    [9] Ou J P, Long X, Li Q S. Seismic response analysis of structures with velocity-dependent dampers [J]. Journal of Constructional Steel Research, 2007, 63: 628―638.
    [10] Park S W. Analytical modeling of viscoelastic dampers for structural and vibration control [J]. International Journal of Solids and Structures, 2001, 38: 8065―8092.
    [11] Singh M P, Chang T S. Seismic analysis of structures with viscoelatic dampers [J]. Journal of Engineering Mechanics, 2009, 135(6): 571―580.
    [12] Zhang J, Zhang G T. The Biot model and its application in viscoelastic composite structures [J]. Journal of Vibration and Acoustics, 2007, 129: 533―540.
    [13] Trindade M, Benjeddou A, Ohayon R. Modeling of frequency-dependent viscoelatic materials for active- passive vibration damping [J]. Journal of Vibration and Acoustics, 2002, 122: 169―174.
    [14] Lewandowski R, Chorazyczewski B. Identification of the parameters of the Kelvin-Voigt and Maxwell fractional models used to modeling of viscoelastic dampers [J]. Computers and Structures, 2010, 88: 1―17.
    [15] Sorrentino S, Fasana A. Finite element analysis of vibration linear systems with fractional derivative viscoelastic modes [J]. Journal of Sound and Vibration, 2007, 299: 839―853.
    [16] 张义同. 热粘弹性理论[M]. 天津: 天津大学出版社, 2002: 16―21. Zhang Yitong. Thermoviscoelasticity theory [M]. Tianjin: Tianjin University Press, 2002: 16―21. (in Chinese)
    [17] Christensen R M. Theory of viscoelasticity [M]. 2nd ed. New York: Academic Press, 1982: 3―9.
    [18] Zanmbrano A, Inaudi J A, Kelly J M. Modal coupling and accuracy of modal strain energy method [J]. Journal of Engineering Mechanics, 1996, 122(7): 603―612.
    [19] Palmeri A. Correlation coefficients for structures with viscoelastic dampers [J]. Engineering Structure, 2006, 28: 1197―1208.
    [20] 廖伯瑜, 周新民, 君志宏. 现代机械动力学及其工程应用: 建模、分析、仿真、修改、控制、优化[M]. 北京: 机械工业出版社, 2003: 175―179. Liao Boyu, Zhou Xinmin, Jun Zhihong. Modern mechanical dynamics and engineering applications: Modeling, analysis, simulation, modification, control, optimization [M]. Beijing: Machinery Industry Press, 2003: 175―179. (in Chinese)
    [21] 李创第, 邹万杰, 葛新广, 等. 多自由度一般积分型粘弹性阻尼减震结构的随机响应与等效阻尼[J]. 工程力学, 2013, 30(4): 136―145. Li Chuangdi, Zou Wanjie, Ge Xinguang, et al. Random response and equivalent damping of MDOF dissipation structures with general integral model viscoelastic dampers [J]. Engineering Mechanics, 2013, 30(4): 136―145. (in Chinese)
    [22] 李创第, 李暾. 结构在水平与竖向随机地震同时作用下的相关函数和谱密度[J]. 工程力学, 2008, 25(8): 156―163. Li Chuangdi, Li Tun. Correlation functions and spectral density functions of structure subjected to horizontal- vertical random earthquake excitations [J]. Engineering Mechanics, 2008, 25(8): 156―163. (in Chinese)
    [23] 李创第, 葛新广, 朱倍权. 带五种被动减振器的高层建筑基于Davenport谱随机风振响应的解析解法[J]. 工程力学, 2009, 26(4): 144―152. Li Chuangdi, Ge Xinguang, Zhu Beiquan. Exact analytic method for random wind-induced response of tall building structures with five sorts of passive dampers on the basis of Davenport spectrum [J]. Engineering Mechanics, 2009, 26(4): 144―152. (in Chinese)
    [24] 方同. 工程随机振动[M]. 北京: 国防工业出版社, 1995: 150―155. Fang Tong. Random vibration engineering [M]. Beijing: Defense Industry Press, 1995: 150―155. (in Chinese)
    [25] 李创第, 葛新广, 邹万杰, 等. 一般非对称非经典结构响应的二阶实振子精确解耦法[J]. 应用力学学报, 2014, 31(2): 212―217. Li Chuangdi, Ge Xinguang, Zou Wanjie, et al. Exact decoupling method of general asymmetric and non-classical structure in second-order real oscillatory vibration [J]. Chinese Journal of Applied Mechanics, 2014, 31(2): 212―217. (in Chinese)
  • 期刊类型引用(3)

    1. 王瑶,和振兴. 轨道板侧裂纹对车辆-轨道动力性能的影响研究. 高速铁路技术. 2025(01): 55-62 . 百度学术
    2. 张雅琴,高亮,钟阳龙,蒋函珂,黄伊琛. 夏季高温下支承层斜裂缝诱发纵连板上拱规律研究. 铁道学报. 2024(03): 165-175 . 百度学术
    3. 王平,李抒效,闫正,徐井芒,李智恒. 板间离缝对高速道岔转辙器区轨道动力响应的影响. 中南大学学报(自然科学版). 2023(12): 4946-4955 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  325
  • HTML全文浏览量:  34
  • PDF下载量:  141
  • 被引次数: 9
出版历程
  • 收稿日期:  2014-04-08
  • 修回日期:  2015-03-01
  • 刊出日期:  2015-11-24

目录

    /

    返回文章
    返回