全动垂直尾翼的抖振主动控制方法研究

孙杰, 李敏

孙杰, 李敏. 全动垂直尾翼的抖振主动控制方法研究[J]. 工程力学, 2016, 33(7): 234-243. DOI: 10.6052/j.issn.1000-4750.2014.11.0996
引用本文: 孙杰, 李敏. 全动垂直尾翼的抖振主动控制方法研究[J]. 工程力学, 2016, 33(7): 234-243. DOI: 10.6052/j.issn.1000-4750.2014.11.0996
SUN Jie, LI Min. STUDY OF ACTIVE BUFFETING CONTROL METHODS OF FULLY-MOVABLE VERTICAL TAILS[J]. Engineering Mechanics, 2016, 33(7): 234-243. DOI: 10.6052/j.issn.1000-4750.2014.11.0996
Citation: SUN Jie, LI Min. STUDY OF ACTIVE BUFFETING CONTROL METHODS OF FULLY-MOVABLE VERTICAL TAILS[J]. Engineering Mechanics, 2016, 33(7): 234-243. DOI: 10.6052/j.issn.1000-4750.2014.11.0996

全动垂直尾翼的抖振主动控制方法研究

基金项目: 国家自然科学基金重点项目(11232012);国家自然科学基金面上项目(11372320)
详细信息
    作者简介:

    孙杰(1983-),男,河南人,博士生,主要从事气动弹性和结构动力学研究(E-mail:sunjie1101@126.com).

    通讯作者:

    李敏(1968-),男,湖北人,教授,博士,博导,主要从事气动弹性和结构动力学研究(E-mail:limin@buaa.edu.cn).

  • 中图分类号: V215.36

STUDY OF ACTIVE BUFFETING CONTROL METHODS OF FULLY-MOVABLE VERTICAL TAILS

More Information
    Corresponding author:

    LI Min: 10.6052/j.issn.1000-4750.2014.11.0996

  • 摘要: 全动垂尾结构不同于铰接方向舵的垂直安定面结构。该文深入研究了全动垂尾抖振响应的压电驱动控制、垂尾旋转控制以及混合压电控制和垂尾旋转控制的三种主动控制方法。使用压电驱动的载荷比拟方法对压电纤维复合材料(MFC)驱动器进行建模,利用偶极子格网法计算随体空气动力。采用线性二次型高斯最优控制(LQG)方法分别设计三种模型的控制律。分析三种控制模型的抖振响应,研究其控制效果的差异,并进行比较。结果表明:压电控制因受控制电压和压电功放所限,控制效果有限;垂尾旋转控制由于受限于控制频率,对高频激励控制效果不明显;混合控制方法兼具垂尾旋转控制和压电控制两种方法的优点,能同时降低低阶模态和高阶模态上的能量,从而扩大了控制频率的范围,因此其控制效果最好;最后,通过具有不同结构参数的全动垂尾模型的算例,验证了混合抖振控制方法的可行性和有效性。
    Abstract: Fully-movable vertical tail structures are different from vertical stabilizer structures with rudders. Three active control methods including piezoelectric control, vertical tail rotation control, and hybrid piezoelectric control and vertical tail rotation control of fully-movable vertical tails are studied. The electrodynamics of macro fiber composite (MFC) actuators are modeled by the load simulation method of using a piezoelectric actuator and the motion-induced aerodynamic forces are calculated by the doublet-lattice method. The control laws of the three models are designed using the linear quadratic Gaussian (LQG) method. The buffeting responses of the three control models are analyzed, and afterwards the differences and comparisons of the control effect of those models are investigated. The results show that the control effect of the piezoelectric control is limited due to the limitation of the control voltage and the piezoelectric power amplifier. Because the vertical tail's rotation control is subject to its own control frequency, its control effect is not obvious for high-frequency excitation. The hybrid control method combines the advantages of the vertical tail rotation control and the piezoelectric control, by which the energy in low-order and high-order modes are all reduced, thus the scope of control frequency is markedly expanded. Therefore, the control effect of the hybrid control is the best. Finally, numerical examples with different structural parameters for the fully-movable vertical tails verify the feasibility and effectiveness of the hybrid buffeting control method.
  • [1] Anderson W D, Patel S R, Black C L. Low-speed wind tunnel buffet testing on the F-22[J]. Journal of Aircraft, 2006, 43(4):879-885.
    [2] 李劲杰, 杨青, 杨永年. 边条翼布局双垂尾抖振的数值模拟[J]. 空气动力学报, 2007, 25(2):205-210. Li Jinjie, Yang Qing, Yang Yongnian. The numerical investigation of twin-vertical tail buffet of strake-wing configuration[J]. Acta Aerodynamica Sinica, 2007, 25(2):205-210. (in Chinese)
    [3] 韩冰, 徐敏, 蔡天星, 等. 涡破裂诱导的垂尾抖振数值模拟[J]. 航空学报, 2012, 33(5):788-795. Han Bing, Xu Min, Cai Tianxing, et al. Numerical simulation of vertical tail buffeting induced by vortex breakdown[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(5):788-795. (in Chinese)
    [4] 高杰, 张明禄, 吕志咏. 双立尾和三角翼之间的气动干扰实验研究[J]. 实验流体力学, 2005, 19(3):51-57. Gao Jie, Zhang Minglu, Lü Zhiyong. Investigation of aerodynamic interference between delta wings and twin fins[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(3):51-57. (in Chinese)
    [5] Sheta E F. Buffet alleviation of F/A-18 aircraft using LEX fences[C]. 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Norfolk Virginia America:AIAA Paper, 2003:1-11.
    [6] Bean D E, Wood N J. Experimental investigation of twin-fin buffeting and suppression[J]. Journal of Aircraft, 1996, 33(4):761-767.
    [7] Rock S M, Ashley H, Digumarthi R, et al. Active control for fin buffet alleviation[C]. US Air Force Wright Laboratory, Wright Patterson AFB, Ohio America:AIAA Paper, 1993:1051-1056.
    [8] Breitsamter C. Aerodynamic active control for fin-buffet load alleviation[J]. Journal of Aircraft, 2005, 42(5):1252-1263.
    [9] Nitzsche F, Zimcik D G, Ryall T G, et al. Closed-loop control tests for vertical fin buffeting alleviation using strain actuation[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(4):855-857.
    [10] Sheta E F, Moses R W, Huttsell L J. Active smart material control system for buffet alleviation[J]. Journal of Sound and Vibration, 2006, 292(3/4/5):854-868.
    [11] Zhao Yonghui, Hu Haiyan. Active control of vertical tail buffeting by piezoelectric actuators[J]. Journal of Aircraft, 2009, 46(4):1167-1175.
    [12] 王巍, 杨智春, 张新平. 扰流激励下垂尾抖振响应主模态控制风洞试验研究[J]. 振动与冲击, 2012, 31(16):18-21. Wang Wei, Yang Zhichun, Zhang Xinping. Fin buffeting alleviation in disturbed flow by buffeting principal modal control method[J]. Vibration and Shock, 2012, 31(16):18-21. (in Chinese)
    [13] 张庆, 叶正寅. 一种基于充气气囊的垂尾抖振抑制新方法研究[J]. 工程力学, 2014, 31(12):234-240. Zhang Qing, Ye Zhengyin. Study on a new method for suppression of vertical tail buffeting using inflatable bumps[J]. Engineering Mechanics, 2014, 31(12):234-240. (in Chinese)
    [14] Gao Le, Lu Qingqing, Fei Fan, et al. Active vibration control based on piezoelectric smart composite[J]. Smart Materials and Structures, 2013, 22(12), 125032.
    [15] Burnham J K, Pitt D M, White E V, et al. An advanced buffet load alleviation system[C]. 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, Seattle Washington America:AIAA Paper, 2001:1-10.
    [16] Chen Y, Viresh W, Zimcik D. Development and verification of real-time controllers for F/A-18 vertical fin buffet load alleviation[C]. Smart Structures and Materials Conference, Bellingham Washington America:Proceedings of SPIE, 2006, 6173(10):1-12.
    [17] Wickramasinghe V K, Chen Y, Zimcik D G. Experimental evaluation of an advanced buffet suppression system on full-scale F/A-18 fin[J]. Journal of Aircraft, 2007, 44(3):733-740.
    [18] 李敏, 陈伟民, 王明春, 等. 压电驱动的载荷比拟方法[J]. 中国科学E辑:技术科学, 2009, 39(11):1810-1817. Li Min, Chen Weimin, Wang Mingchun, et al. A load simulation method of piezoelectric actuator in FEM for smart structures[J]. Science in China Series E:Technological Science, 2009, 52(9):2576-2584. (in Chinese)
    [19] Lee B H K. Statistical analysis of wing/fin buffeting response[J]. Progress in Aerospace Sciences, 2002, 38(4/5):305-345.
    [20] Albano E, Rodden W P. A doublet-lattice method for calculating lift distributions of oscillating surfaces in subsonic flow[J]. AIAA Journal, 1969, 7(2):279-285.
    [21] Song Zhiguang, Li Fengming. Aerothermoelastic analysis and active flutter control of supersonic composite laminated cylindrical shells[J]. Composite Structures, 2013, 106:653-660.
    [22] Li Min, Chen Weimin, Guan De, et al. Experimental validation of improving aircraft rolling power using piezoelectric actuators[J]. Chinese Journal of Aeronautics, 2005, 18(2):108-115.
  • 期刊类型引用(2)

    1. 孙杰,黄庭轩,孙禄君,朱东方,黄静. 基于压电纤维复合材料的抖振主动控制研究. 机械强度. 2020(04): 770-776 . 百度学术
    2. 孙杰,黄庭轩,朱东方,黄静,孙禄君. 基于压电纤维复合材料的航天器动力学建模与振动抑制. 飞控与探测. 2019(03): 70-76 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  301
  • HTML全文浏览量:  27
  • PDF下载量:  98
  • 被引次数: 5
出版历程
  • 收稿日期:  2014-11-26
  • 修回日期:  2015-05-10
  • 刊出日期:  2016-07-24

目录

    /

    返回文章
    返回