高延性混凝土无腹筋梁受剪性能试验研究

邓明科, 代洁, 梁兴文, 张明玥

邓明科, 代洁, 梁兴文, 张明玥. 高延性混凝土无腹筋梁受剪性能试验研究[J]. 工程力学, 2016, 33(10): 208-217. DOI: 10.6052/j.issn.1000-4750.2015.03.0209
引用本文: 邓明科, 代洁, 梁兴文, 张明玥. 高延性混凝土无腹筋梁受剪性能试验研究[J]. 工程力学, 2016, 33(10): 208-217. DOI: 10.6052/j.issn.1000-4750.2015.03.0209
DENG Ming-ke, DAI Jie, LIANG Xing-wen, ZHANG Ming-yue. EXPERIMENTAL STUDY ON THE SHEAR BEHAVIOR OF HIGH DUCTILE FIBER REINFORCED CONCRETE BEAMS WITHOUT STIRRUPS[J]. Engineering Mechanics, 2016, 33(10): 208-217. DOI: 10.6052/j.issn.1000-4750.2015.03.0209
Citation: DENG Ming-ke, DAI Jie, LIANG Xing-wen, ZHANG Ming-yue. EXPERIMENTAL STUDY ON THE SHEAR BEHAVIOR OF HIGH DUCTILE FIBER REINFORCED CONCRETE BEAMS WITHOUT STIRRUPS[J]. Engineering Mechanics, 2016, 33(10): 208-217. DOI: 10.6052/j.issn.1000-4750.2015.03.0209

高延性混凝土无腹筋梁受剪性能试验研究

基金项目: 国家自然科学基金项目(51578445);西安市科技计划项目(CX13135-3)
详细信息
    作者简介:

    代洁(1988-),女,河南洛阳人,博士生,从事高性能土木工程材料研究(E-mail:daijie880828@126.com);梁兴文(1952-),男,陕西华县人,教授,工学硕士,从事建筑结构及抗震研究(E-mail:liangxingwen2000@163.com);张明玥(1989-),女,天津人,硕士生,从事高性能土木工程材料研究(E-mail:zhangmingyued@163.com)

    通讯作者:

    邓明科(1979-),男,四川南充人,教授,工学博士,从事高性能土木工程材料与新型结构研究(E-mail:dengmingke@126.com).

  • 中图分类号: TU317

EXPERIMENTAL STUDY ON THE SHEAR BEHAVIOR OF HIGH DUCTILE FIBER REINFORCED CONCRETE BEAMS WITHOUT STIRRUPS

More Information
    Corresponding author:

    DENG Ming-ke: 10.6052/j.issn.1000-4750.2015.03.0209

  • 摘要: 提出采用高延性混凝土改善梁的抗剪性能和变形能力,设计了8个高延性混凝土梁和3个作为对比试件的混凝土梁,并通过静力试验研究不同剪跨比和配筋率高延性混凝土无腹筋梁的破坏形态和破坏机理。高延性混凝土无腹筋梁的剪切破坏形态有挤压破坏、剪压破坏、弯剪破坏和剪拉破坏。试验结果表明:高延性混凝土梁的剪切破坏均表现出一定的延性,与普通混凝土梁的脆性剪切破坏具有明显不同;高延性混凝土梁的剪切裂缝开展缓慢,说明高延性混凝土良好的拉伸应变硬化和多裂缝开展特性能够有效控制剪切裂缝的发展,防止混凝土压碎剥落,显著提高梁的抗剪性能和耐损伤能力;相比普通混凝土无腹筋梁,高延性混凝土无腹筋梁的受剪承载力和变形能力均有明显提高,表明采用高延性混凝土可以显著改善无腹筋梁的脆性剪切破坏模式;剪跨比和纵筋配筋率对高延性混凝土梁的剪切破坏形态和承载力影响较大,其受剪承载力随剪跨比的增大而降低,随配筋率的增大而有所提高。
    Abstract: In order to improve the shear behavior and deformability of the beams without stirrups, 8 high ductile fiber reinforced concrete (HDC) beams were designed, and 3 reinforced concrete (RC) beams were designed for comparison. The failure mechanism and mode of beams on different shear span ratios and longitudinal reinforcement ratios were studied by static loading tests. The shear failure modes of HDC beams without stirrups are extrusion failure, shear-compression failure, bending-shear failure, and shear-tension failure. The research shows that: all of HDC beams have shown ductility to some extent, which were clearly different from the shear failure mode of RC beams without stirrups; the tensile strain hardening and multiple cracking of HDC can effectively control the development of shear cracks of HDC beams during the failure process, prevent from the crushing and spalling of concrete, and significantly improve the shear capacity and damage resistance ability of HDC beams; comparing with RC beams, the shear capacity and deformability of HDC beams has been enhanced notably, which suggests that the brittle shear failure mode of beams without stirrups can be obviously improved; both the shear span ratio and longitudinal reinforcement ratio have great influences on the failure form and bearing capacity of HDC beams without stirrups. And the shear bearing capacity will be reduced when the shear span ratio is increased, and will be increased with the increase of longitudinal reinforcement ratio.
  • [1] Li V C, Leung C K Y. Steady state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics, ASCE, 1992, 188(11):2246-2264.
    [2] Li V C. ECC-tailored composites through micromechanical modeling[C]//Montreal:Canadian Society of Civil Engineering, 1998:64-97.
    [3] Li V C. On engineered cementitious composite (ECC) a review of the material and its applications[J]. Journal of Advanced Concrete Technology, 2003, 1(3):215-230.
    [4] Li V C, Wang S, Wu C. Tensile strain-hardening behavior of PVA-ECC[J]. ACI Materials Journal, 2001, 98(6):483-492.
    [5] Li V C, Mishra D K, Naaman A E, et al. On the shear behavior of engineered cementitious composites[J]. Advanced Cement Based Materials, 1993, 1(3):142-149.
    [6] Kanakubo T, Shimizu K. Evaluation of bending and shear capacities of HPFRCC members toward the structural application[C]. Japan, Sapporo:Proceeding of the Hokkaido University COE Workshop on High Performance Fiber Reinforced Composites for Sustainable Infrastructure System-material Modeling, Structural Design and Application, 2007:1-10
    [7] Fischer G, Li V C. Influence of matrix ductility on the tension-stiffening behavior of steel reinforced ECC[J]. ACI Structural Journal, 2002, 99(1):104-111.
    [8] Fischer G, Li V C. Effect of matrix ductility on deformation behavior of steel reinforced ECC flexural members under reversed cyclic loading conditions[J]. ACI Structural Journal, 2002, 99(6):781-790.
    [9] Shimizu K, Kabele T, Kanda T, et al. Shear behavior of steel reinforced PVA-ECC beams[C]. Vancouver B C & Canada:Proceedings of 13th World conference on Earthquake Engineering, 2004:704-712.
    [10] Ashour S A, Hasanain G S, Wafa F F. Shear behavior of high-strength fiber reinforced concrete beams. ACI Structural Journal, 1992, 89(2):176-184.
    [11] Voo Y L, Poon W K, Foster S J. Shear strength of steel fiber-reinforced ultrahigh-performance concrete beams without stirrups[J]. Journal of Structural Engineering, 2010, 136(11):1393-1400.
    [12] Kanda T, Watanabe S, Li V C. Application of pseudo strain hardening cementitious composites to shear resistance structural elements[C]. Freiburg:Aedificatio Publishers, Proceedings of Fracture Mechanics of Concrete Structures, 1998:1477-1490.
    [13] 邓明科, 寇佳亮, 梁兴文, 等. 延性纤维混凝土剪力墙抗震性能试验研究[J]. 工程力学, 2014, 31(7):170-177. Deng Mingke, Kou Jialiang, Liang Xingwen, et al. Experimental investigation on seismic behavior of ductile fiber reinforced concrete shear walls[J]. Engineering Machanics, 2014, 31(7):170-177. (in Chinese)
    [14] 梁兴文, 车佳玲, 邓明科. 对角斜筋小跨高比纤维增强混凝土连梁抗震性能试验研究[J]. 建筑结构学报,2014, 34(8):135-141. Liang Xingwen, Che Jialing, Deng Mingke. Experimental research on seismic behavior of diagonally reinforced FRC coupling beams with small span-to-depth ratio[J]. Journal of Building Structures, 2014, 34(8):135-141. (in Chinese)
    [15] 寇佳亮, 邓明科, 梁兴文. 延性纤维增强混凝土单轴拉伸性能试验研究[J]. 建筑结构. 2013, 43(1):59-64. Kou Jialiang, Deng Mingke, Liang Xingwen. Experimental study of uniaxial tensile properties of ductile fiber reinforced concrete[J]. Building Structure, 2013, 43(1):59-64. (in Chinese)
    [16] 邓明科, 秦萌, 梁兴文. 高延性纤维混凝土抗压性能试验研究[J]. 工业建筑, 2015, 45(4):120-126. Deng Mingke, Qin Meng, Liang Xingwen. Experimental study of compressive behavior of engineered cementitious composites[J]. Industrial Construction, 2015, 45(4):120-126. (in Chinese)
    [17] 邓明科, 孙宏哲, 梁兴文, 等. 延性纤维混凝土抗弯性能试验研究[J]. 工业建筑, 2014, 20(5):85-90. Deng Mingke, Sun Hongzhe, Liang Xingwen, et al. Experimental study on flexural behavior of ductile fiber reinforced concrete[J]. Industrial Construction, 2014, 20(5):85-90. (in Chinese)
    [18] GB/T 50152-2012, 混凝土结构试验方法标准[S]. 北京:中国建筑工业出版社, 2012. GB/T 50152-2012, Standard for test method of concrete structures[S]. Beijing:China Architecture & Building Press, 2012. (in Chinese)
    [19] GB 50010-2010, 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50010-2010, Code for design of concrete structures[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
  • 期刊类型引用(11)

    1. 陈蕙芸,薛子龙,赵宝成. 局部腐蚀影响下Q345钢材及焊缝连接的承载性能及计算方法. 苏州科技大学学报(工程技术版). 2025(01): 9-16 . 百度学术
    2. 张学帅. 海洋腐蚀环境中风电塔抗震性能退化规律研究. 价值工程. 2023(12): 111-116 . 百度学术
    3. 黄立元,郭勇,翟步升. 锈蚀条件下在役防船撞钢套箱防撞性能研究. 山东交通科技. 2023(05): 140-143 . 百度学术
    4. 舒赣平,陈尧,卢瑞华,武成凤. 模拟海洋与工业大气环境下结构钢腐蚀行为. 西安建筑科技大学学报(自然科学版). 2022(04): 475-481+490 . 百度学术
    5. 杨旭,罗永峰,刘俊,栗云松,张玉建. 既有网格结构损伤检测与模拟方法研究进展. 建筑钢结构进展. 2021(02): 1-13+21 . 百度学术
    6. 赵中伟,吴刚. 锈蚀焊接空心球节点随机抗压承载力研究. 工程力学. 2021(05): 219-228+238 . 本站查看
    7. 吴兆旗,魏源,王鑫涛,姜绍飞. 局部锈蚀圆钢管构件轴压力学性能正交试验研究. 工程力学. 2020(04): 144-152 . 本站查看
    8. 曹琛,郑山锁,胡卫兵,张晓辉,刘毅. 大气环境腐蚀下钢结构力学性能研究综述. 材料导报. 2020(11): 11162-11170 . 百度学术
    9. 王煜成,张逢伯,许清风. 锈蚀对既有钢结构性能影响研究进展. 施工技术. 2020(09): 34-40 . 百度学术
    10. 尚志刚,郑山锁,张晓辉,郑淏,董晋琦,贺金川. 锈蚀钢框架梁抗震性能试验及地震损伤模型. 中南大学学报(自然科学版). 2020(08): 2322-2332 . 百度学术
    11. 郑山锁,刘晓航,张晓辉,贺金川,刘毅. 不同锈蚀程度下Q235钢框架梁恢复力模型研究. 湖南大学学报(自然科学版). 2019(09): 44-53 . 百度学术

    其他类型引用(18)

计量
  • 文章访问数:  488
  • HTML全文浏览量:  56
  • PDF下载量:  108
  • 被引次数: 29
出版历程
  • 收稿日期:  2015-03-19
  • 修回日期:  2015-08-27
  • 刊出日期:  2016-10-24

目录

    /

    返回文章
    返回