建筑结构构件基于性能的抗爆设计方法

于润清, 方秦, 陈力, 颜海春

于润清, 方秦, 陈力, 颜海春. 建筑结构构件基于性能的抗爆设计方法[J]. 工程力学, 2016, 33(11): 75-83. DOI: 10.6052/j.issn.1000-4750.2015.04.0280
引用本文: 于润清, 方秦, 陈力, 颜海春. 建筑结构构件基于性能的抗爆设计方法[J]. 工程力学, 2016, 33(11): 75-83. DOI: 10.6052/j.issn.1000-4750.2015.04.0280
YU Run-qing, FANG Qin, CHEN Li, YAN Hai-chun. PERFORMANCE-BASED BLAST-RESISTANT DESIGN OF BUILDING STRUCTURE COMPONENTS[J]. Engineering Mechanics, 2016, 33(11): 75-83. DOI: 10.6052/j.issn.1000-4750.2015.04.0280
Citation: YU Run-qing, FANG Qin, CHEN Li, YAN Hai-chun. PERFORMANCE-BASED BLAST-RESISTANT DESIGN OF BUILDING STRUCTURE COMPONENTS[J]. Engineering Mechanics, 2016, 33(11): 75-83. DOI: 10.6052/j.issn.1000-4750.2015.04.0280

建筑结构构件基于性能的抗爆设计方法

基金项目: 国家自然科学基金面上项目(51478467,51378016);国家自然科学基金国际(地区)合作与交流项目(51210012);国家自然科学基金创新研究群体科学基金项目(51321064)
详细信息
    作者简介:

    方秦(1962-),男,福建人,教授,博士,博导,主要从事结构抗爆和防灾减灾研究(E-mail:fangqinjs@139.com);陈力(1982-),男,江苏人,副教授,博士,主要从事结构抗爆和防灾减灾研究(E-mail:chenli1360@qq.com);颜海春(1973-),女,山东人,副教授,博士,主要从事人防结构设计研究(E-mail:yanhaichum@163.com).

    通讯作者:

    于润清(1991-),男,安徽人,博士生,主要从事结构抗爆设计研究(E-mail:yurunqing08@126.com).

  • 中图分类号: TU318+.1

PERFORMANCE-BASED BLAST-RESISTANT DESIGN OF BUILDING STRUCTURE COMPONENTS

  • 摘要: 在我国,基于性能的设计方法已运用于工程结构抗震设计,但尚没有运用在结构抗爆设计。该文将基于性能的设计方法引入结构抗爆领域,提出了基于性能的结构抗爆设计方法,明确了基于性能的抗爆设计中的关键问题,给出了设计思路与步骤。在此基础上,以RC柱为研究对象,以轴心受压承载力损失为性能水平参数,划分了3个等级性能水平;根据典型的爆炸场景,确定爆炸的不同烈度等级,计算出RC柱承受的荷载;针对不同类别的建筑,确定两个水准的抗爆性能目标;结合现有RC柱承载力损失的研究成果,分析不同爆炸烈度下的RC柱的承载力损失,提出RC柱基于承载力损失的性能设计方法;基于确定的性能目标和设计方法,提出RC柱基于性能的抗爆设计步骤;最后,给出了RC柱基于性能的抗爆设计的算例。
    Abstract: In China, performance-based design method has been used in the field of seismic design, but not in the field of blast-resistant design yet. This article introduces the performance-based design method into the field of blast-resistant structural design and proposes a performance-based blast-resistant design method. Some key issues during design were highlighted and a general design idea and procedure were proposed. Then, the RC column was chosen as an example, the loss of axial load bearing capacity was chosen as the performance level parameter and three performance levels were determined. By setting typical blast scenarios, the explosion intensity levels were determined. For different types of buildings, two performance objectives were determined. The loss of load carrying capacity of RC columns under different explosion intensity levels were analyzed using existing research results. Then, a design method based on the loss of load carrying capacity was proposed. Based on the determined performance objectives and the design method, the performance-based blast-resistant design of the RC columns was proposed. At the end of this paper, a design of RC columns was presented in order to describe the performance-based blast-resistant design method.
  • [1] Park R, Paulay T. Ductile reinforced concrete frames-some comments on the special provisions for seismic design of ACI 318-71 and on capacity design[J]. Bulletin of the New Zealand Society for Earthquake Engineering, 1975, 8(1):70-90.
    [2] 徐龙河, 吴耀伟, 李忠献, 等. 基于性能的钢框架结构失效模式识别及优化[J]. 工程力学, 2015:32(10):44-51. Xu Longhe, Wu Yaowei, Li Zhongxian, et al. Performance-based seismic failure mode identification and optimization for steel frame structures[J]. Engineering Mechanics, 2015:32(10):44-51. (in Chinese)
    [3] 郝际平, 袁昌鲁, 樊春雷, 等. 钢板剪力墙结构基于性能的塑性设计方法研究[J]. 工程力学, 2015, 32(7):118-127. Hao Jiping, Yuan Changlu, Fan Chunlei, et al. Performance-based plastic design method for the slender unstiffened steel plate shear walls[J]. Engineering Mechanics, 2015, 32(7):118-127. (in Chinese)
    [4] GB50011-2001, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2001. GB50011-2010, Code for seismic design of buildings[S]. Beijing:China Architecture & Building Press, 2001. (in Chinese)
    [5] FEMA 273. NEHRP guidelines for the seismic rehabilitation of building seismic safety council[S]. Washington DC, USA:Federal Emergency Management Agency, Department of Homeland Security, 1996.
    [6] Committee V S. Performance based seismic engineering of buildings[S]. Structural Engineers Avocation of California (SEAOC), California, 2000.
    [7] ATC 40. Seismic evaluation and retrofit of existing concrete buildings[S]. Applied Technology Council (ATC), California, 1996.
    [8] Hamburger R, Whittaker A. Design of steel structures for blast-related progressive collapse resistance[J]. Modern Steel Construction, 2004, 44(3):45-51.
    [9] Whittaker A, Hamburger R O, Comartin C, et al. Performance-based engineering of buildings and infrastructure for extreme loadings[C]//Proceedings of the AISC-SINY Symposium on Resisting Blast and Progressive Collapse. American Institute of Steel Construction, New York, 2003:1-11.
    [10] Lam N, Mendis P, Ngo T. Response spectrum solutions for blast loading[J]. Electronic Journal of Structural Engineering, 2004, 4(4):28-44.
    [11] Mohamed Ali R M, Louca L A. Performance based design of blast resistant offshore topsides, Part I:Philosophy[J]. Journal of Constructional Steel Research, 2008, 64(9):1030-1045.
    [12] Mohamed Ali R M, Louca L A. Performance-based design of blast resistant offshore topsides, Part II:Modelling and design[J]. Journal of Constructional Steel Research, 2008, 64(9):1046-1058.
    [13] Williamson E B, Bayrak O, Davis C, et al. Performance of bridge columns subjected to blast loads. I:Experimental program[J]. Journal of Bridge Engineering, 2011, 16(6):693-702.
    [14] Oswald C J. Component explosive damage assessment workbook (CEDAW)[M]. Washington:US Army Corps of Engineers Protective Design Center, 2005:36-48.
    [15] Naito C, Dinan R, Bewick B. Use of precast concrete walls for blast protection of steel stud construction[J]. Journal of Performance of Constructed Facilities, 2011, 25(5):454-463.
    [16] Federal Emergency Management Agency. Risk management series:Reference manual-to mitigate potential terrorist attacks against buildings[M]. Washington:Government Printing Office, 2003:24-30.
    [17] Stewart M G. Risk-informed decision support for assessing the costs and benefits of counter-terrorism protective measures for infrastructure[J]. International Journal of Critical Infrastructure Protection, 2010, 3(1):29-40.
    [18] Stewart M G, Netherton M D, Rosowsky D V. Terrorism risks and blast damage to built infrastructure[J]. Natural Hazards Review, 2006, 7(3):114-122.
    [19] Stewart M G, Netherton M D. Security risks and probabilistic risk assessment of glazing subject to explosive blast loading[J]. Reliability Engineering & System Safety, 2008, 93(4):627-638.
    [20] Moteff J. Risk management and critical infrastructure protection:Assessing, integrating, and managing threats, vulnerabilities and consequences[C]. Washington:Library of Congress Washington DC Congressional Research Service, 2005:1-8.
    [21] Olmati P, Petrini F, Gkoumas K. Fragility analysis for the performance-based design of cladding wall panels subjected to blast load[J]. Engineering Structures, 2014, 78:112-120.
    [22] Parisi F. Blast fragility and performance-based pressure-impulse diagrams of European reinforced concrete columns[J]. Engineering Structures, 2015, 103:285-297.
    [23] 师燕超. 爆炸荷载作用下钢筋混凝土结构的动态响应行为与损伤破坏机理[D]. 天津:天津大学, 2009. Shi Yanchao. Dynamic response and damage mechanism of reinforced concrete structures under blast loading[D]. Tianjin:Tianjin University, 2009. (in Chinese)
    [24] 丁阳, 方磊, 李忠献, 等. 防恐建筑结构抗爆防护分类设防标准研究[J]. 建筑结构学报, 2013, 34(4):57-64. Ding Yang, Fang Lei, Li Zhongxian, et al. Research on categorized explosion protection criterion of anti-terrorism building structures[J]. Journal of Building Structures, 2013, 34(4):57-64. (in Chinese)
    [25] 李天祺, 赵振东, 余世舟. 基于GIS的爆炸灾害数值模拟与应急损失评估[J]. 灾害学, 2010, 25(3):96-99. Li Tianqi, Zhao Zhendong, Yu Shizhou. GIS-based numerical simulation and emergency loss evaluation of explosion disasters[J]. Journal of Catastrophology, 2010, 25(3):96-99. (in Chinese)
    [26] 闫秋实, 刘晶波, 伍俊. 典型地铁车站内爆炸致人员伤亡区域的预测研究[J]. 工程力学, 2012, 29(2):81-88. Yan Qiushi, Liu Jingbo, Wujun. Estimation of casualty areas in subway station subjected to terrorist bomb[J]. Engineering Mechanics, 2012, 29(2):81-88. (in Chinese)
    [27] Augusti G, Ciampoli M. Performance-based design in risk assessment and reduction[J]. Probabilistic Engineering Mechanics, 2008, 23(4):496-508.
    [28] NKB (Nordic Committee on Building Regulations). Structure for building regulations[R]. Stockholm, Sweden:NKB, 1978.
    [29] GB 50009-2012, 建筑结构荷载规范[S]. 北京:中国建筑工业出版社, 2012. GB 50009-2012, Load code for design of building structures[S]. Beijing:China Architecture & Building Press, 2012. (in Chinese)
    [30] 傅学怡, 黄俊海. 结构抗连续倒塌设计分析方法探讨[J]. 建筑结构学报, 2009(增刊1):195-199. Fu Xueyi, Huang Junhai. Structural design methods to prevent progressive collapse[J]. Journal of Building Structures, 2009(Suppl 1):195-199. (in Chinese)
    [31] 张建兴, 施刚, 王元清, 等. 钢框架抗连续性倒塌研究综述[J]. 钢结构, 2012(增刊1):51-69. Zhang Jianxing, Shi Gang, Wang Yuanqing, et al. Research on progressive collapse of steel frames[J]. Steel Structures, 2012(Suppl 1):51-69. (in Chinese)
    [32] FEMA 427 Primer for design of commercial buildings to mitigate terrorist attacks[S]. Washington DC, USA:Federal Emergency Management Agency, Department of Homeland Security, 2003.
    [33] Sharma H, Hurlebaus S, Gardoni P. Performance-based response evaluation of reinforced concrete columns subject to vehicle impact[J]. International Journal of Impact Engineering, 2012, 43:52-62.
    [34] Bao X, Li B. Residual strength of blast damaged reinforced concrete columns[J]. International Journal of Impact Engineering, 2010, 37(3):295-308.
    [35] UFC4-010-01 Unified facilities criteria (UFC):DOD minimum antiterrorism standards for buildings[S]. Washington DC, USA:US Army corps of Engineering, 2002.
    [36] Technical Manual (TM5-1300). To resist the effect of accidental explosions[M]. Department of the Army, Navy and the Air Force, Washington, DC, 1990:1355-1360.
    [37] 彭立敏, 施成华, 刘小兵. 隧道钢筋混凝土结构的优化设计模型及应用[J]. 中国公路学报, 2001, 14(2):71-74. Peng Limin, Shi Chenghua, Liu Xiaobin. Optimization design model and application about the reinforced concrete structure of tunnel China[J]. Journal of Highway and Transport, 2001, 14(2):71-74. (in Chinese)
    [38] FEMA 452 Risk Assessment:A how-to guide to mitigate potential terrorist attacks[S]. Washington DC, USA:Federal Emergency Management Agency. Department of Homeland Security, 2005.
  • 期刊类型引用(8)

    1. 张典典,张国梁,奚培哲,何晖. 静力荷载下起波钢筋混凝土梁吸能能力有限元分析. 广东土木与建筑. 2025(04): 58-60+69 . 百度学术
    2. 张典典,何晖,石同幸. 爆炸损伤后起波钢筋混凝土梁吸能能力有限元分析. 低温建筑技术. 2024(04): 101-104 . 百度学术
    3. 于润清,田佩云. 钢筋混凝土框架结构基于性能的抗爆设计方法. 防护工程. 2024(03): 26-32 . 百度学术
    4. 刘希亮,李烨,王新宇,GURKALO Filip. 管廊内燃气爆炸作用下不同抗爆结构性能研究. 高压物理学报. 2019(04): 197-206 . 百度学术
    5. 盛超,朱浩,左工. 装配式剪力墙中间层边节点的破坏形态试验分析. 科技通报. 2018(07): 236-239 . 百度学术
    6. 齐宝欣,阎石,武行. 建筑结构抗爆设防性能目标研究. 爆破. 2018(03): 135-140 . 百度学术
    7. 朱月. 建筑结构抗爆设计标准现状研究. 科技资讯. 2018(18): 86+88 . 百度学术
    8. 王子琪. 基于性能的建筑构件抗爆设计流程研究. 山西建筑. 2017(11): 54-55 . 百度学术

    其他类型引用(10)

计量
  • 文章访问数:  429
  • HTML全文浏览量:  35
  • PDF下载量:  210
  • 被引次数: 18
出版历程
  • 收稿日期:  2015-04-09
  • 修回日期:  2016-04-06
  • 刊出日期:  2016-11-24

目录

    /

    返回文章
    返回