[1] |
Park R, Paulay T. Ductile reinforced concrete frames-some comments on the special provisions for seismic design of ACI 318-71 and on capacity design[J]. Bulletin of the New Zealand Society for Earthquake Engineering, 1975, 8(1):70-90.
|
[2] |
徐龙河, 吴耀伟, 李忠献, 等. 基于性能的钢框架结构失效模式识别及优化[J]. 工程力学, 2015:32(10):44-51. Xu Longhe, Wu Yaowei, Li Zhongxian, et al. Performance-based seismic failure mode identification and optimization for steel frame structures[J]. Engineering Mechanics, 2015:32(10):44-51. (in Chinese)
|
[3] |
郝际平, 袁昌鲁, 樊春雷, 等. 钢板剪力墙结构基于性能的塑性设计方法研究[J]. 工程力学, 2015, 32(7):118-127. Hao Jiping, Yuan Changlu, Fan Chunlei, et al. Performance-based plastic design method for the slender unstiffened steel plate shear walls[J]. Engineering Mechanics, 2015, 32(7):118-127. (in Chinese)
|
[4] |
GB50011-2001, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2001. GB50011-2010, Code for seismic design of buildings[S]. Beijing:China Architecture & Building Press, 2001. (in Chinese)
|
[5] |
FEMA 273. NEHRP guidelines for the seismic rehabilitation of building seismic safety council[S]. Washington DC, USA:Federal Emergency Management Agency, Department of Homeland Security, 1996.
|
[6] |
Committee V S. Performance based seismic engineering of buildings[S]. Structural Engineers Avocation of California (SEAOC), California, 2000.
|
[7] |
ATC 40. Seismic evaluation and retrofit of existing concrete buildings[S]. Applied Technology Council (ATC), California, 1996.
|
[8] |
Hamburger R, Whittaker A. Design of steel structures for blast-related progressive collapse resistance[J]. Modern Steel Construction, 2004, 44(3):45-51.
|
[9] |
Whittaker A, Hamburger R O, Comartin C, et al. Performance-based engineering of buildings and infrastructure for extreme loadings[C]//Proceedings of the AISC-SINY Symposium on Resisting Blast and Progressive Collapse. American Institute of Steel Construction, New York, 2003:1-11.
|
[10] |
Lam N, Mendis P, Ngo T. Response spectrum solutions for blast loading[J]. Electronic Journal of Structural Engineering, 2004, 4(4):28-44.
|
[11] |
Mohamed Ali R M, Louca L A. Performance based design of blast resistant offshore topsides, Part I:Philosophy[J]. Journal of Constructional Steel Research, 2008, 64(9):1030-1045.
|
[12] |
Mohamed Ali R M, Louca L A. Performance-based design of blast resistant offshore topsides, Part II:Modelling and design[J]. Journal of Constructional Steel Research, 2008, 64(9):1046-1058.
|
[13] |
Williamson E B, Bayrak O, Davis C, et al. Performance of bridge columns subjected to blast loads. I:Experimental program[J]. Journal of Bridge Engineering, 2011, 16(6):693-702.
|
[14] |
Oswald C J. Component explosive damage assessment workbook (CEDAW)[M]. Washington:US Army Corps of Engineers Protective Design Center, 2005:36-48.
|
[15] |
Naito C, Dinan R, Bewick B. Use of precast concrete walls for blast protection of steel stud construction[J]. Journal of Performance of Constructed Facilities, 2011, 25(5):454-463.
|
[16] |
Federal Emergency Management Agency. Risk management series:Reference manual-to mitigate potential terrorist attacks against buildings[M]. Washington:Government Printing Office, 2003:24-30.
|
[17] |
Stewart M G. Risk-informed decision support for assessing the costs and benefits of counter-terrorism protective measures for infrastructure[J]. International Journal of Critical Infrastructure Protection, 2010, 3(1):29-40.
|
[18] |
Stewart M G, Netherton M D, Rosowsky D V. Terrorism risks and blast damage to built infrastructure[J]. Natural Hazards Review, 2006, 7(3):114-122.
|
[19] |
Stewart M G, Netherton M D. Security risks and probabilistic risk assessment of glazing subject to explosive blast loading[J]. Reliability Engineering & System Safety, 2008, 93(4):627-638.
|
[20] |
Moteff J. Risk management and critical infrastructure protection:Assessing, integrating, and managing threats, vulnerabilities and consequences[C]. Washington:Library of Congress Washington DC Congressional Research Service, 2005:1-8.
|
[21] |
Olmati P, Petrini F, Gkoumas K. Fragility analysis for the performance-based design of cladding wall panels subjected to blast load[J]. Engineering Structures, 2014, 78:112-120.
|
[22] |
Parisi F. Blast fragility and performance-based pressure-impulse diagrams of European reinforced concrete columns[J]. Engineering Structures, 2015, 103:285-297.
|
[23] |
师燕超. 爆炸荷载作用下钢筋混凝土结构的动态响应行为与损伤破坏机理[D]. 天津:天津大学, 2009. Shi Yanchao. Dynamic response and damage mechanism of reinforced concrete structures under blast loading[D]. Tianjin:Tianjin University, 2009. (in Chinese)
|
[24] |
丁阳, 方磊, 李忠献, 等. 防恐建筑结构抗爆防护分类设防标准研究[J]. 建筑结构学报, 2013, 34(4):57-64. Ding Yang, Fang Lei, Li Zhongxian, et al. Research on categorized explosion protection criterion of anti-terrorism building structures[J]. Journal of Building Structures, 2013, 34(4):57-64. (in Chinese)
|
[25] |
李天祺, 赵振东, 余世舟. 基于GIS的爆炸灾害数值模拟与应急损失评估[J]. 灾害学, 2010, 25(3):96-99. Li Tianqi, Zhao Zhendong, Yu Shizhou. GIS-based numerical simulation and emergency loss evaluation of explosion disasters[J]. Journal of Catastrophology, 2010, 25(3):96-99. (in Chinese)
|
[26] |
闫秋实, 刘晶波, 伍俊. 典型地铁车站内爆炸致人员伤亡区域的预测研究[J]. 工程力学, 2012, 29(2):81-88. Yan Qiushi, Liu Jingbo, Wujun. Estimation of casualty areas in subway station subjected to terrorist bomb[J]. Engineering Mechanics, 2012, 29(2):81-88. (in Chinese)
|
[27] |
Augusti G, Ciampoli M. Performance-based design in risk assessment and reduction[J]. Probabilistic Engineering Mechanics, 2008, 23(4):496-508.
|
[28] |
NKB (Nordic Committee on Building Regulations). Structure for building regulations[R]. Stockholm, Sweden:NKB, 1978.
|
[29] |
GB 50009-2012, 建筑结构荷载规范[S]. 北京:中国建筑工业出版社, 2012. GB 50009-2012, Load code for design of building structures[S]. Beijing:China Architecture & Building Press, 2012. (in Chinese)
|
[30] |
傅学怡, 黄俊海. 结构抗连续倒塌设计分析方法探讨[J]. 建筑结构学报, 2009(增刊1):195-199. Fu Xueyi, Huang Junhai. Structural design methods to prevent progressive collapse[J]. Journal of Building Structures, 2009(Suppl 1):195-199. (in Chinese)
|
[31] |
张建兴, 施刚, 王元清, 等. 钢框架抗连续性倒塌研究综述[J]. 钢结构, 2012(增刊1):51-69. Zhang Jianxing, Shi Gang, Wang Yuanqing, et al. Research on progressive collapse of steel frames[J]. Steel Structures, 2012(Suppl 1):51-69. (in Chinese)
|
[32] |
FEMA 427 Primer for design of commercial buildings to mitigate terrorist attacks[S]. Washington DC, USA:Federal Emergency Management Agency, Department of Homeland Security, 2003.
|
[33] |
Sharma H, Hurlebaus S, Gardoni P. Performance-based response evaluation of reinforced concrete columns subject to vehicle impact[J]. International Journal of Impact Engineering, 2012, 43:52-62.
|
[34] |
Bao X, Li B. Residual strength of blast damaged reinforced concrete columns[J]. International Journal of Impact Engineering, 2010, 37(3):295-308.
|
[35] |
UFC4-010-01 Unified facilities criteria (UFC):DOD minimum antiterrorism standards for buildings[S]. Washington DC, USA:US Army corps of Engineering, 2002.
|
[36] |
Technical Manual (TM5-1300). To resist the effect of accidental explosions[M]. Department of the Army, Navy and the Air Force, Washington, DC, 1990:1355-1360.
|
[37] |
彭立敏, 施成华, 刘小兵. 隧道钢筋混凝土结构的优化设计模型及应用[J]. 中国公路学报, 2001, 14(2):71-74. Peng Limin, Shi Chenghua, Liu Xiaobin. Optimization design model and application about the reinforced concrete structure of tunnel China[J]. Journal of Highway and Transport, 2001, 14(2):71-74. (in Chinese)
|
[38] |
FEMA 452 Risk Assessment:A how-to guide to mitigate potential terrorist attacks[S]. Washington DC, USA:Federal Emergency Management Agency. Department of Homeland Security, 2005.
|