钢筋与混凝土粘结界面局部断裂能的确定

杨树桐, 陈瑜嘉

杨树桐, 陈瑜嘉. 钢筋与混凝土粘结界面局部断裂能的确定[J]. 工程力学, 2016, 33(增刊): 39-44. DOI: 10.6052/j.issn.1000-4750.2015.05.S006
引用本文: 杨树桐, 陈瑜嘉. 钢筋与混凝土粘结界面局部断裂能的确定[J]. 工程力学, 2016, 33(增刊): 39-44. DOI: 10.6052/j.issn.1000-4750.2015.05.S006
YANG Shu-tong, CHEN Yu-jia. DETERMINATION OF INTERFACIAL LOCAL FRACTURE ENERGY AT STEEL BAR-CONCRETE INTERFACE[J]. Engineering Mechanics, 2016, 33(增刊): 39-44. DOI: 10.6052/j.issn.1000-4750.2015.05.S006
Citation: YANG Shu-tong, CHEN Yu-jia. DETERMINATION OF INTERFACIAL LOCAL FRACTURE ENERGY AT STEEL BAR-CONCRETE INTERFACE[J]. Engineering Mechanics, 2016, 33(增刊): 39-44. DOI: 10.6052/j.issn.1000-4750.2015.05.S006

钢筋与混凝土粘结界面局部断裂能的确定

基金项目: 国家自然科学基金项目(51378481);青岛市应用基础研究项目(13-1-4-250-jch);中国海洋大学山东省海洋工程重点实验室开放基金项目(201462009)
详细信息
    作者简介:

    陈瑜嘉(1991-),男,安徽人,硕士生,主要从事岩石与混凝土结构锚固理论及试验研究(E-mail:cyj3n121@126.com).

    通讯作者:

    杨树桐(1979-),男,山东人,副教授,博士,主要从事混凝土断裂力学、混凝土结构加固与锚固理论及应用研究(E-mail:shutongyang2013@163.com).

  • 中图分类号: TU375

DETERMINATION OF INTERFACIAL LOCAL FRACTURE ENERGY AT STEEL BAR-CONCRETE INTERFACE

  • 摘要: 钢筋与混凝土界面断裂能是一个重要的参数,其决定界面的粘结滑移大小及界面发生粘结破坏后裂缝的扩展程度。以往确定钢筋与混凝土界面粘结滑移本构关系的试验中,测得的滑移量过大,使得得到的界面断裂能值偏高,与实际情况不符。但通过现有的试验手段很难较为准确地得到界面局部粘结滑移本构关系。鉴于此,该文采用理论与试验相结合的方法确定钢筋与混凝土粘结界面局部断裂能的大小。针对直径为18 mm的光圆钢筋与混凝土粘结锚固试件,利用PVC管设置不同非粘结段长度作为界面的初始缝长。通过钢筋从混凝土中的拔出试验测得不同初始缝长对应的钢筋极限抗拔力。利用界面的变形协调条件和力的平衡条件,得到了不同加载阶段钢筋拉应力与界面粘结应力沿粘结长度方向的分布表达式,进而求得钢筋的极限抗拔力。结果表明,该极限抗拔力大小取决于界面的粘结强度、残余摩擦应力和初始裂缝尖端区域的局部断裂能大小。通过钢筋极限抗拔力的理论与试验结果的比较,得到了界面局部断裂能与界面初始缝长之间的关系。进而确定了局部断裂能沿钢筋粘结长度方向的分布模型,并得到了无尺寸效应的界面断裂能大小为25 N/m。
    Abstract: Interfacial fracture energy at the steel bar-concrete interface is a very important parameter which affects the value of interfacial shear-slip and the interfacial crack propagation after debonding. In previous tests of interfacial shear stress-slip relationship between the steel bar and concrete, the measured value of shear-slip is overestimated, resulting in the overestimation of the interfacial fracture energy. However, the actual local shear stress-slip relationship can be hardly obtained based on the present test approaches. The intention of this paper is to determine the local interfacial fracture energy between steel bar and concrete by combing the analytical model with test results. For the round plain steel bars with diameters of 18 mm anchored in concrete anchorage specimens, PVC tube was used to determine different unbonded lengths denoted as the initial crack lengths. Then the maximum pull-out load of steel bar from concrete can be experimentally measured. The distributions of tensile stress in the bar and interfacial shear stress along the bonding length were expressed in closed form at different loading stages based on the deformation compatibility conditions at the interface and equilibrium conditions of forces. Thus, the maximum pull-out load can be given analytically. The results show that the analytically determined maximum pull-out load is related to the bonding strength, residual frictional stress and local fracture energy at the crack-tip region. The correlation between the crack-tip local fracture energy and initial crack length is established upon the comparison between the analytically determined maximum pull-out loads and the experimentally measured ones. The interfacial local fracture energy distribution along the bonding length is then given, and the size-independent interfacial fracture energy is 25 N/m.
  • [1] RILEM Draft Recommendation. Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams[J]. Materials and Structures, 1985, 18(106): 287-290.
    [2] Ba?ant Z P. Size effect in blunt fracture: Concrete, rock, metal[J]. Journal of Engineering Mechanics, ASCE, 1984, 110(4): 518-535.
    [3] Ba?ant Z P, Kazemi M. Determination of fracture energy, process zone length and brittleness number from size effect, with application to rock and concrete[J]. International Journal of Fracture, 1990, 44(2): 111-131.
    [4] Carpinteri A, Chiaia B, Ferro G. Size effects of nominal tensile strength of concrete structures: multifractality of materials ligaments and dimensional transition from order to disorder[J]. Materials and Structures, 1995, 28(180): 311-317.
    [5] Carpinteri A, Chiaia B. Multifractal nature of concrete fracture surfaces and size effects on nominal fracture energy[J]. Materials and Structures, 1995, 28(182): 435-443.
    [6] Carpinteri A, Chiaia B. Size effects on concrete fracture energy: Dimensional transitions from order to disorder[J]. Materials and Structures, 1996, 29(189): 259-266.
    [7] Hu X Z, Wittmann F H. Fracture energy and fracture process zone[J]. Materials and Structures, 1992, 25(6): 319-326.
    [8] Hu X Z. Fracture process zone and strain softening in cementitious materials[R]. ETH Building Materials Report No.1, ETH, Switzerland, Aedificatio, Freiburg, 1995.
    [9] Duan K, Hu X Z, Wittmann F H. Boundary effect on concrete fracture and non-constant fracture energy distribution[J]. Engineering Fracture Mechanics, 2003, 70(16): 2257-2268.
    [10] Muralidhara S, Raghu Prasad B K, Karihaloo B L, Singh R K. Size-independent fracture energy in plain concrete beams using tri-linear model[J]. Construction and Building Materials, 2011, 25(7): 3051-3058.
    [11] Yang S, Hu X, Wu Z. Influence of local fracture energy distribution on maximum fracture load of three-point-bending notched concrete beams[J]. Engineering Fracture Mechanics, 2011, 78(18): 3289-3299.
    [12] Yang S, Hu X, Leng K, Liu Y. Correlation between cohesive crack-tip local fracture energy and peak load in mortar specimens[J]. Journal of Materials in Civil Engineering (ASCE), 2014, 26(10): 04014069-1-04014069-8.
    [13] Karihaloo B L, Ramachandra Murthy A, Iyer N R. Determination of size-independent specific fracture energy of concrete mixes by the tri-linear model[J]. Cement and Concrete Research, 2013, 49: 82-88.
    [14] Ramachandra Murthy A, Karihaloo B L, Iyer N R, Raghu Prasad B K. Determination of size-independent specific fracture energy of concrete mixes by two methods[J]. Cement and Concrete Research, 2013, 50: 19-25.
    [15] Wu Z, Yang S, Zheng J, Hu X. Analytical solution for the pullout response of FRP rods embedded in steel tubes filled with cement grout[J]. Materials and Structures, 2010, 43(5): 597-609.
    [16] RILEM-FIP-CEB. Reinforcement for reinforced and presented concrete, tentative recommendations[J]. Materials and Structures, 1973, 6(2): 79-118.
  • 期刊类型引用(9)

    1. 刘旭宏,祁皑,罗才松,黄凯. 基于双重壳模型的钢筋黏结滑移有限元模拟. 工程抗震与加固改造. 2022(03): 23-29 . 百度学术
    2. 赵发军,李建. 基于ABAQUS的复合箍筋约束轻骨料混凝土柱偏压力学性能研究. 中国测试. 2022(09): 171-176+184 . 百度学术
    3. 陈宇良,朱玲,吉云鹏,吴辉琴,叶培欢. 三轴受压粉煤灰陶粒轻骨料混凝土力学性能试验. 复合材料学报. 2022(10): 4801-4812 . 百度学术
    4. 万宇通,郑文忠,王英. 网格箍筋约束混凝土柱轴压受力性能试验研究. 工程力学. 2022(11): 166-176 . 本站查看
    5. 牛建刚,许文明,梁剑. 受压区局部约束塑钢纤维轻骨料混凝土梁的抗弯性能. 材料导报. 2021(08): 8056-8063 . 百度学术
    6. 李磊,王卓涵,张艺欣,郑山锁. 混凝土结构中考虑滑移效应的钢筋本构模型研究. 工程力学. 2020(03): 88-97 . 本站查看
    7. 邓宗才,姚军锁. 高强钢筋约束超高性能混凝土柱轴心受压本构模型研究. 工程力学. 2020(05): 120-128 . 本站查看
    8. 赵恩亮. 不同侧向应力作用下轻骨料混凝土力学性能研究. 新型建筑材料. 2020(05): 17-21 . 百度学术
    9. 周天华,余吉鹏,李亚鹏,张钰. 单轴对称十字型钢混凝土短柱轴压性能试验研究. 工程力学. 2020(12): 157-170 . 本站查看

    其他类型引用(14)

计量
  • 文章访问数:  296
  • HTML全文浏览量:  31
  • PDF下载量:  68
  • 被引次数: 23
出版历程
  • 收稿日期:  2015-05-07
  • 修回日期:  2016-01-24
  • 刊出日期:  2016-06-24

目录

    /

    返回文章
    返回