含摩擦阻尼器钢连梁的往复加载试验

师骁, 王彦栋, 曲哲, 纪晓东

师骁, 王彦栋, 曲哲, 纪晓东. 含摩擦阻尼器钢连梁的往复加载试验[J]. 工程力学, 2016, 33(增刊): 156-160. DOI: 10.6052/j.issn.1000-4750.2015.05.S017
引用本文: 师骁, 王彦栋, 曲哲, 纪晓东. 含摩擦阻尼器钢连梁的往复加载试验[J]. 工程力学, 2016, 33(增刊): 156-160. DOI: 10.6052/j.issn.1000-4750.2015.05.S017
SHI Xiao, WANG Yan-dong, QU Zhe, JI Xiao-dong. CYCLIC LOADING TEST OF STEEL COUPLING BEAM WITH FRICTION DAMPER[J]. Engineering Mechanics, 2016, 33(增刊): 156-160. DOI: 10.6052/j.issn.1000-4750.2015.05.S017
Citation: SHI Xiao, WANG Yan-dong, QU Zhe, JI Xiao-dong. CYCLIC LOADING TEST OF STEEL COUPLING BEAM WITH FRICTION DAMPER[J]. Engineering Mechanics, 2016, 33(增刊): 156-160. DOI: 10.6052/j.issn.1000-4750.2015.05.S017

含摩擦阻尼器钢连梁的往复加载试验

基金项目: 国家自然科学基金项目(51478441,51308514)
详细信息
    作者简介:

    师骁(1989-),男,四川人,硕士生,主要从事建筑结构减隔震研究(E-mail:shixiao3882@gmail.com);王彦栋(1991-),男,山东人,硕士生,主要从事建筑结构减隔震研究(E-mail:jltxwyd008@163.com);纪晓东(1979-),男,山西人,副教授,工学博士,防灾减灾研究所副所长,主要从事建筑结构抗震减震研究(E-mail:jixd@tsinghua.edu.cn).

    通讯作者:

    曲哲(1983-),男,陕西人,副研究员,工学博士,主要从事建筑物减隔震与地震恢复能力研究(E-mail:quz@iem.ac.cn).

  • 中图分类号: TU317

CYCLIC LOADING TEST OF STEEL COUPLING BEAM WITH FRICTION DAMPER

  • 摘要: 提出一种用于高层建筑的含摩擦阻尼器钢连梁。摩擦阻尼器以外的型钢梁段即使在罕遇地震作用下也预期保持弹性,损伤只发生在摩擦片-钢板界面。采用高强螺栓与碟形弹簧串联为摩擦片-钢板摩擦界面施加正压力,以减小温度应力等因素对摩擦力的影响。地震过后,简单放松螺栓就可以释放结构残余变形,并可拆卸摩擦片以查看其损伤程度,如有必要可方便地更换摩擦片。对该钢连梁进行往复加载试验。结果表明,选用的摩擦材料具有可靠的摩擦性能,摩擦阻尼器表现出稳定且优异的耗能能力。摩擦力相对比较稳定,未出现过大的超强,有利于简化周边连接构件的设计。
    Abstract: A steel coupling beam equipped with a friction damper in the mid span is proposed for the use in high-rise buildings. Damage is only likely to take place on the brake pad-to-steel friction interface while the other parts of the steel coupling beam are expected to remain elastic under major earthquakes. High-strength bolts and disc springs are placed in series to pressure multiple brake pad-to-steel interfaces to reduce the impact of temperature stress on the friction force. One can easily release the residual deformation after earthquake by loosening the bolts, either for damage inspection or for replacement if necessary. Cyclic loading tests on steel coupling beams with the proposed friction damper were conducted to show the reliable frictional behavior of the chosen material and superior energy dissipating capacity of the friction damper. The well-defined frictional force without much overstrength makes it easier to design the strength demand for adjacent elements and joints.
  • [1] Mahin S A, Bertero V V. Nonlinear seismic response of a coupled wall system[C]. Reston: Proceedings ASCE National Convention, 1975: 1-30.
    [2] Fortney P, Shahrooz B M, Rassati G A. Large-scale testing of a replaceable ‘fuse’ steel coupling beam[J]. Journal of Structural Engineering, ASCE, 2007, 133(12): 1801-1807.
    [3] Kumagai H, Shimazaki K, Hayashi S. Coupling beam dampers with low yield point steel Part 1: Experimental study on coupling beams with steel dampers in mid-span[J]. Journal of Structural and Construction Engineering, Transaction of AIJ, 2009, 74(638):755-763.
    [4] Wang T, Guo X, He X K, Duan C S, Du Y F. Experimental study on replaceable hybrid coupling beams[J]. Applied Mechanics and Materials, 2012, 166/167/168/169: 1779-1784.
    [5] Mao C X, Dong J Z, Li H, Ou J P. Seismic performance of RC shear wall structure with novel shape memory alloy dampers in coupling beams[J]. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, Proceedings of SPIE, 2012, 8345(2): 304-320.
    [6] Constantin C, Michaeal M. Viscoelastic coupling dampers (VCDs) for enhanced wind and seismic performance of high-rise buildings[J]. Earthquake Engineering and Structural Dynamics, 2013, 42(15): 2217-2233.
    [7] Chuang H S, Moon B W, Lee S K, Park J H. Seismic performance of friction dampers using flexure of RC shear wall system[J]. The Structural Design of Tall and Special Buildings, 2009, 18(7): 807-822.
    [8] Grigorian C E, Yang T S, Popov E. Slotted bolted connection energy dissipators[J]. Earthquake Spectra, 1993, 9(3): 491-504.
    [9] Rojas P, Ricles J M, Sause R, Seismic performance of post-tensioned steel moment resisting frames with frictino devices[J]. Journal of Structural Engineering, ASCE, 2005, 131(4): 529-540.
    [10] 森下邦宏, 平井潤, 本田誠, 井上幸一. 複数摺動面を有する摩擦型ダンパーの実験的研究[J]. 日本建築学会構造系論文集, 日本建築学会, 2003, 547: 61-68. Morishita K, Hirai J, Honda M, Inoue K. Experimental approach of slip damper consists in multiple sliding plates for structural seismic control[J]. Journal of Structural and Construction Engineering, Transaction of AIJ, 2003, 547: 61-68. (in Japanese)
    [11] Morgen B G, Kurama Y C. Characterization of two friction interfaces for use in seismic damper applications[J]. Materials and Structures, 2009, 42: 35-49.
    [12] 吉岡智和, 大久保全陸. 梁端下端フランジに高力ボルト摩擦すべりダンパーを設置したH形鋼梁の曲げせん断実験[J]. 日本建築学会構造系論文集, 日本建築学会, 2003, 573: 177-184. Yoshioka T, Ohkubo M. Bending-shear tests of wide flange steel beam using the bolted frictional-slippage damper on the bottom flange at the beam end[J]. Journal of Structural and Construction Engineering, Transaction of AIJ, 2003, 573: 177-184. (in Japanese)
    [13] Terai M, Sato T, Yoshioka T, Minami K. Studies of bolted frictional-slippage damper with rubber wahser: Dynamic loading test of friction damper using aluminum alloy sliding plates[J]. Journal of Structural and Construction Engineering, Transaction of AIJ, 2007, 614: 107-114.
    [14] Pall A S, Marsh C. Response of friction damped braced frames[J]. Journal of the Structural Division, ASCE, 1982, 108(ST6): 171-175.
    [15] Kanzawa Y, Hanamura H, Sano T, et al. Development of the friction damper with fourfold shear high-strength bolt connection[C]. Tokyo: Summaries of Technical Papers of AIJ Annual Meeting, 2002, B-2: 773-776.
    [16] 日本隔震结构协会. 被动减震结构设计·施工手册[M]. 北京: 中国建筑工业出版社, 2008: 527-530. The Japan Society of Seismic Isolation. Manual of design and construction for passive-controlled structure[M]. Beijing: China Building Industry Press, 2008: 527-530. (in Chinese)
  • 期刊类型引用(26)

    1. 隋伟宁,马勇,董峥,王旭,杨海涛,夏达东. 螺栓预紧力对PC外挂墙板摩擦耗能装置力学性能试验研究. 工业建筑. 2024(04): 54-63 . 百度学术
    2. 田明仑,杨伟松,吴宦龙,李海生,王向英. 基于滑移连接的分阶屈服金属连梁阻尼器抗震性能研究. 工程抗震与加固改造. 2023(01): 62-70 . 百度学术
    3. 周海涛,赵成华,郝志勇,杨英,白哲,薛娜,谷骁勇,傅丰,王海有. 耗能型钢连梁抗震性能试验研究. 河南城建学院学报. 2023(01): 31-41 . 百度学术
    4. 杨参天,李爱群. 转动摩擦铰阻尼器力学性能试验研究. 工程力学. 2023(07): 75-81 . 本站查看
    5. 石文龙,虞文桂,张浩波,王利民. 金属复合型摩擦阻尼器力学性能试验研究. 噪声与振动控制. 2023(05): 280-285 . 百度学术
    6. 石文龙,张浩波. 摩擦阻尼器的研究进展. 地震工程学报. 2022(01): 1-16 . 百度学术
    7. 陈云,陈超,徐子凡,禹文华. 装配式梁柱转动摩擦耗能节点抗震性能试验研究. 振动工程学报. 2022(01): 45-54 . 百度学术
    8. 舒展,董翰林,石文龙,GREGORY MacRae,宁波,甘兆焯. 钢框架中可更换橡胶抗弯耗能阻尼器减震性能分析. 振动与冲击. 2022(07): 159-166+213 . 百度学术
    9. 管民生,黎振迎,杜宏彪. 地震可恢复功能连梁研究综述与展望. 深圳大学学报(理工版). 2022(04): 390-401 . 百度学术
    10. 崔瑶,吴天骄,王涛. 弯曲型摩擦钢桁架连梁(BFTCB)抗震性能研究. 土木工程学报. 2021(03): 77-85 . 百度学术
    11. 田旭,王德斌,范国玺,王世鹏,张皓. 新型减震梁柱节点及其框架结构抗震性能研究. 大连交通大学学报. 2021(03): 82-86+93 . 百度学术
    12. 闫丽娟,张春巍. 转动摩擦阻尼器及转动摩擦耗能结构研究进展. 建筑结构. 2021(S2): 725-731 . 百度学术
    13. 刘元珍,王文辉,李晓东. 基于新型杆式摩擦阻尼器的单层球面网壳地震响应分析. 工程抗震与加固改造. 2020(03): 120-125 . 百度学术
    14. 王宇亮,崔洪军,张玉敏,谷玉珍. 滑动长孔螺栓摩擦阻尼器力学性能试验研究. 震灾防御技术. 2020(01): 11-20 . 百度学术
    15. 吴天骄,崔瑶,王涛. 剪切型摩擦钢桁架连梁(SFTCB)抗震性能研究. 地震工程与工程振动. 2020(05): 139-147 . 百度学术
    16. 李书进,刘毅,李睿,孔凡,张远进. 新型可更换粘弹性复合连梁阻尼器的耗能性能研究. 武汉理工大学学报. 2020(07): 25-31+49 . 百度学术
    17. 马士俊,张爱社. 改善小跨高比连梁抗震性能方法研究进展. 山东建筑大学学报. 2019(01): 62-68 . 百度学术
    18. 王宇航,刘元九,周绪红. 腹板屈曲约束钢连梁抗震性能研究. 工程力学. 2019(06): 49-59+69 . 本站查看
    19. 郑娟. 联肢剪力墙结构连梁的抗震试验研究. 混凝土与水泥制品. 2019(08): 72-76 . 百度学术
    20. 隋伟宁,周魁,王占飞. 转动型摩擦阻尼器力学性能及抗震效果分析. 工业建筑. 2018(04): 137-143 . 百度学术
    21. 叶良浩,曲哲,贺思维,朱文灿,侯和涛. 刹车片型摩擦消能器的单轴力学性能试验研究. 土木工程学报. 2018(07): 70-74+97 . 百度学术
    22. 隋伟宁,周魁,董锐. 新型转动型摩擦阻尼器设计及应用. 建筑结构. 2018(S2): 404-408 . 百度学术
    23. 刘云帅,韩建平,王晓琴. 具自复位摩擦阻尼器的桥梁隔震性能研究. 工程科学与技术. 2018(06): 77-83 . 百度学术
    24. 周云,房晓俊,王贤鹏,刘柠. 可更换连梁抗震性能研究与应用进展. 工程抗震与加固改造. 2017(03): 1-10+29 . 百度学术
    25. 邓付元,纪晓东,王涛,施唯. 带楼板RC连梁抗震性能试验研究. 工程力学. 2017(S1): 54-58 . 本站查看
    26. 孙飞飞,侯玉芳,李承铭. 转动型阻尼器及转动型耗能节点研究现状. 建筑钢结构进展. 2016(06): 1-11+41 . 百度学术

    其他类型引用(53)

计量
  • 文章访问数:  578
  • HTML全文浏览量:  71
  • PDF下载量:  128
  • 被引次数: 79
出版历程
  • 收稿日期:  2015-04-30
  • 修回日期:  2016-01-20
  • 刊出日期:  2016-06-24

目录

    /

    返回文章
    返回