模拟复杂流动的一种隐式直接力浸入边界方法

王文全, 张国威, 闫妍

王文全, 张国威, 闫妍. 模拟复杂流动的一种隐式直接力浸入边界方法[J]. 工程力学, 2017, 34(2): 28-33,93. DOI: 10.6052/j.issn.1000-4750.2015.07.0600
引用本文: 王文全, 张国威, 闫妍. 模拟复杂流动的一种隐式直接力浸入边界方法[J]. 工程力学, 2017, 34(2): 28-33,93. DOI: 10.6052/j.issn.1000-4750.2015.07.0600
WANG Wen-quan, ZHANG Guo-wei, YAN Yan. AN IMPLICIT DIRECT FORCE IMMERSED BOUNDARY METHOD FOR SIMULATING COMPLEX FLOW[J]. Engineering Mechanics, 2017, 34(2): 28-33,93. DOI: 10.6052/j.issn.1000-4750.2015.07.0600
Citation: WANG Wen-quan, ZHANG Guo-wei, YAN Yan. AN IMPLICIT DIRECT FORCE IMMERSED BOUNDARY METHOD FOR SIMULATING COMPLEX FLOW[J]. Engineering Mechanics, 2017, 34(2): 28-33,93. DOI: 10.6052/j.issn.1000-4750.2015.07.0600

模拟复杂流动的一种隐式直接力浸入边界方法

基金项目: 国家自然科学基金项目(51479085,11262008);霍英东青年基金项目(141120)
详细信息
    作者简介:

    张国威(1989-),男,云南大理人,硕士生,主要从事流体力学方面的研究(E-mail:1145371357@qq.com);闫妍(1978-),女,吉林前郭人,教授,博士,主要从事流固耦合方面的研究(E-mail:yanyankm@126.com).

    通讯作者:

    王文全(1977-),男,四川蓬安人,教授,博士,博导,从事多场耦合力学方面的研究(E-mail:wwqquan@126.com).

  • 中图分类号: O35

AN IMPLICIT DIRECT FORCE IMMERSED BOUNDARY METHOD FOR SIMULATING COMPLEX FLOW

  • 摘要: 为避免复杂贴体网格的生成,该文采用一种隐式直接力浸入边界法模拟复杂边界流动问题。借助求解不可压缩N-S方程组的分步投影方法的思想,来求解基于浸入边界法的耦合系统方程。其中固体边界离散点的作用力密度通过强制满足固体边界的无滑移条件导出,进而通过δ光滑函数对固体壁面附近速度场进行二次修正。在空间离散上,对流项采用QUICK迎风格式,扩散项采用中心差分格式,采用二阶显式Adams-Bashforth法离散时间项。以雷诺数为25、40和300的圆柱绕流为基准数值算例,通过与实验结果和其他文献数值结果的对比,验证数值计算方法的可靠性。
    Abstract: To avoid the traditional body-fitted numerical methods and extend the application of immersed boundary method to complex flow, a new numerical method for simulating complex flow based on the implicit direct force immersed boundary method is presented. A mathematical model described the interaction between an immersed rigid body and fluid is established and whose governing equation is solved using the projection step method similar to the fractional step method for solving the incompressible Navier-Stokes equation. The moment source is not pre-calculated, but determined implicitly in such a way that velocity at the immersed boundary interpolated from the corrected velocity field accurately satisfies the no-slip boundary condition. Also, the second velocity near the solid wall updated is implemented using a δ smooth function. The QUICK upwind scheme and the second central scheme are applied to solve convection and diffusion terms respectively. The second explicit Adams-Bashforth method is used to the time discretization. The present immersed boundary method(IBM) is validated by the basic numerical example of flowing over one cylinder at Reynolds number 25,40 and 300.
  • [1] Ali Vakil, Sheldon Green. Two-dimensional side-by-side circular cylinders at moderate Reynolds numbers[J]. Computers & Fluids, 2011, 51(1):136-144.
    [2] 刘松, 符松. 串列双圆柱绕流问题的数值模拟[J].计算力学学报, 2002, 17(3):260-266. Liu Song, Fu Song. Numerical simulation of flow past two cylinders in tandem arrangement[J]. Chinese Journal of Computational Mechanics, 2000, 17(3):260-266. (in Chinese)
    [3] 郝栋伟, 王文全. 超弹性柔性结构与流体耦合运动的浸入边界法研究[J]. 工程力学, 2013, 30(11):36-41. Hao Dongwei, Wang Wenquan. Numerical investigation of interaction between a flexible hyper-elastic structure and fluid using immersed boundary method[J]. Engineering Mechanics, 2013, 30(11):36-41. (in Chinese)
    [4] 郝栋伟, 张立翔, 王文全. 流固耦合S-型自主游动柔性鱼运动特性分析[J]. 工程力学, 2015, 32(5):13-18. Hao Dongwei, Zhang Lixiang, Wang Wenquan. Swimming patterns of an S-type self-propelled flexible fish in fluid-structure interaction[J]. Engineering Mechanics, 2015, 32(5):13-18. (in Chinese)
    [5] Peskin C S. The immersed boundary method[J]. Acta Numerica, 2002, 11:479-517.
    [6] Mittal R, Iaccarino G. Immersed boundary methods[J]. Annual Review of Fluid Mechanics, 2005, 37:239-261.
    [7] Sotiropoulos F, Yang X. Immersed boundary methods for simulating fluid-structure interaction[J]. Progress in Aerospace and Science, 2014, 65:1-21.
    [8] Griffith B E, Peskin C S. On the order of accuracy of the immersed boundary method:Higher order convergence rates for sufficiently smooth problems[J]. Journal of Computational Physics, 2005, 208(1):75-105.
    [9] Yang J M, Stern F. A simple and efficient direct forcing immersed boundary framework for fluid-structure interactions[J]. Journal of Computational Physics, 2012, 231(15):5029-5061.
    [10] Ren W W, Shu C, Wu J, Yang W M. Boundary condition-enforced immersed boundary method for thermal flow problems with Dirichlet temperature condition and its applications[J]. Computers & Fluids, 2012, 57:40-51.
    [11] Uhlmann M. An immersed boundary method with direct forcing for the simulation of particulate flows[J]. Journal of Computational Physics, 2005, 209(2):448-476.
    [12] Le D V, Khoo B C, Lim K M. An implicit-forcing immersed boundary method for simulating viscous flows in irregular domains[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(25):2119-2130.
    [13] Yang X, Zhang X, Li Z, He G W. A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations[J]. Journal of Computational Physics, 2009, 228(20):7821-7836.
    [14] 胡建伟, 汤怀民. 微分方程数值方法[M]. 第2版. 北京:科学出版社, 2007:79-105. Hu Jianwei, Tang Huaimin. Numerical methods for differential equations[M]. 2nd ed. Beijing:Science Press, 2007:79-105. (in Chinese)
    [15] Gresho P M, Chan R, Upson C, et al. A modified finite element method for solving the time-dependent, incompressible Navier-Stokes equations. Part 2:Applications[J]. International Journal for Numerical Methods in Fluids, 1984, 4(7):619-640.
    [16] Saiki E M, Iringen S B. Numerical simulation of a cylinder in uniform flow:application of a virtual boundary method[J]. Journal of Computational Physics, 1996, 123(2):450-465.
    [17] Coutanceau M, Bouard R. Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation:steady flow[J]. Journal of Fluid Mechanics, 1977, 79(2):231-256.
    [18] Grove A S, Shair F H, Petersen E E, Acrivos A. An experimental investigation of the steady separated flow past a circular cylinder[J]. Journal of Fluid Mechanics, 1964, 19(1):60-80.
    [19] Schliching H. Boundary-layer theory[M]. New York:Mcgraw-hill Book Company, 1979:19-21.
    [20] Balaras E. Modeling complex boundaries using an external force field on fixed cartesian grids in large-eddy simulations[J]. Computers & Fluids, 2004, 33(3):375-404.
  • 期刊类型引用(9)

    1. 刘旭宏,祁皑,罗才松,黄凯. 基于双重壳模型的钢筋黏结滑移有限元模拟. 工程抗震与加固改造. 2022(03): 23-29 . 百度学术
    2. 赵发军,李建. 基于ABAQUS的复合箍筋约束轻骨料混凝土柱偏压力学性能研究. 中国测试. 2022(09): 171-176+184 . 百度学术
    3. 陈宇良,朱玲,吉云鹏,吴辉琴,叶培欢. 三轴受压粉煤灰陶粒轻骨料混凝土力学性能试验. 复合材料学报. 2022(10): 4801-4812 . 百度学术
    4. 万宇通,郑文忠,王英. 网格箍筋约束混凝土柱轴压受力性能试验研究. 工程力学. 2022(11): 166-176 . 本站查看
    5. 牛建刚,许文明,梁剑. 受压区局部约束塑钢纤维轻骨料混凝土梁的抗弯性能. 材料导报. 2021(08): 8056-8063 . 百度学术
    6. 李磊,王卓涵,张艺欣,郑山锁. 混凝土结构中考虑滑移效应的钢筋本构模型研究. 工程力学. 2020(03): 88-97 . 本站查看
    7. 邓宗才,姚军锁. 高强钢筋约束超高性能混凝土柱轴心受压本构模型研究. 工程力学. 2020(05): 120-128 . 本站查看
    8. 赵恩亮. 不同侧向应力作用下轻骨料混凝土力学性能研究. 新型建筑材料. 2020(05): 17-21 . 百度学术
    9. 周天华,余吉鹏,李亚鹏,张钰. 单轴对称十字型钢混凝土短柱轴压性能试验研究. 工程力学. 2020(12): 157-170 . 本站查看

    其他类型引用(14)

计量
  • 文章访问数:  468
  • HTML全文浏览量:  40
  • PDF下载量:  254
  • 被引次数: 23
出版历程
  • 收稿日期:  2015-07-21
  • 修回日期:  2016-04-20
  • 刊出日期:  2017-02-24

目录

    /

    返回文章
    返回