土石混合体宏观力学性能研究的细观等效分析方法

杜修力, 张佩, 金浏

杜修力, 张佩, 金浏. 土石混合体宏观力学性能研究的细观等效分析方法[J]. 工程力学, 2017, 34(10): 44-52. DOI: 10.6052/j.issn.1000-4750.2016.03.0181
引用本文: 杜修力, 张佩, 金浏. 土石混合体宏观力学性能研究的细观等效分析方法[J]. 工程力学, 2017, 34(10): 44-52. DOI: 10.6052/j.issn.1000-4750.2016.03.0181
DU Xiu-li, ZHANG Pei, JIN Liu. A MESOSCOPIC EQUIVALENT ANALYSIS METHOD FOR THE STUDY ON MACROMECHANICAL PROPERTIES OF SOIL-ROCK MIXTURE[J]. Engineering Mechanics, 2017, 34(10): 44-52. DOI: 10.6052/j.issn.1000-4750.2016.03.0181
Citation: DU Xiu-li, ZHANG Pei, JIN Liu. A MESOSCOPIC EQUIVALENT ANALYSIS METHOD FOR THE STUDY ON MACROMECHANICAL PROPERTIES OF SOIL-ROCK MIXTURE[J]. Engineering Mechanics, 2017, 34(10): 44-52. DOI: 10.6052/j.issn.1000-4750.2016.03.0181

土石混合体宏观力学性能研究的细观等效分析方法

基金项目: 国家自然科学基金重点项目(51538001);北京自然科学基金重点项目(8161001)
详细信息
    作者简介:

    张佩(1988-),女,山东人,博士生,主要从事隧道与地下工程领域研究(E-mail:zhangpei068@163.com);金浏(1985-),男,江苏人,教授,博士,主要从事混凝土及混凝土结构理论研究(E-mail:kinglew2007@163.com).

    通讯作者:

    杜修力(1962-),男,四川人,教授,博士,博导,主要从事地震工程领域研究(E-mail:duxiuli@bjut.edu.cn).

  • 中图分类号: TU43

A MESOSCOPIC EQUIVALENT ANALYSIS METHOD FOR THE STUDY ON MACROMECHANICAL PROPERTIES OF SOIL-ROCK MIXTURE

  • 摘要: 土石混合体在组成结构、力学性质和变形行为等方面显著区别于均质土体和岩石。结合土石混合体的细观结构特征,将其看作由块石和土体基质组成的两相复合材料,提出了土石混合体宏观力学特性分析的细观尺度多步等效化分析方法,继而对该分析方法中两个核心问题,即块石粒径阈值及复合材料等效化问题分别进行了研究。该方法的本质思想是:首先将较小粒径块石与土体基质进行均匀化处理,获得其各向同性的等效均匀介质;其次,将较大粒径的块石投放进等效均匀介质中,形成新的混合体,进而再次基于有限元数值方法对新混合体的力学特性及变形规律进行研究。基于该套分析方法对某土石混合体三轴加载排水试验进行了模拟与分析,发现该文方法获得的结果与试验结果吻合良好,验证了方法的有效性。
    Abstract: Soil-rock mixture is significantly different from soil and rock in structure, mechanical properties and deformation behavior. Considering the mesoscopic structure of soil-rock mixture which can be treated as a two-phase composite of rock blocks and soil, a mesoscopic equivalent analysis method for studying the macro-mechanical properties of soil-rock mixture is proposed. Two key problems of the method, mainly about the rock size threshold and equivalent method of soil-rock mixture, are discussed. Firstly, homogenization process is conducted on the "small" stones and soil to obtain the equivalent homogeneous isotropic matrix. Then the new soil-rock mixture is formed by placing the "big" stones in the equivalent matrix, and its mechanical behavior and deformation feature are analyzed using numerical approaches. Based on the method, consolidated drained triaxial tests of soil-rock mixture are simulated. The analysis shows that the results obtained by the mesoscopic equivalent analysis method are in good agreement with those obtained by the tests, thus proves the efficiency of the method.
  • [1] Medley E. The engineering characterization of melanges and similar block-in-matrix rocks (bimrocks)[D]. Berkley:University of California, 1994.
    [2] Lindquist E S. The strength and deformation properties of mélange[D]. Berkley:University of California, 1994.
    [3] 油新华. 土石混合体的随机结构模型及其应用研究[D]. 北京:北京交通大学, 2001. You Xinhua. Stochastic structural model of the earth-rock aggregate and its application[D]. Beijing:Northern Jiaotong University, 2001. (in Chinese)
    [4] 徐文杰, 张海洋. 土石混合体研究现状及发展趋势[J]. 水利水电科技进展, 2013, 33(1):80-88. Xu Wenjie, Zhang Haiyang. Research status and development trend of soil-rock mixture[J]. Advances in Science and Technology of Water Resources, 2013, 33(1):80-88. (in Chinese)
    [5] 王宇, 李晓, 赫建明, 等. 土石混合体细观特性研究现状及展望[J]. 工程地质学报, 2014, 22(1):112-123. Wang Yu, Li Xiao, Hao Jianming et al. Research status and prospect of rock and soil aggregate[J]. Journal of Engineering Geology, 2014, 22(1):112-123. (in Chinese)
    [6] 孙华飞, 鞠杨, 王晓斐, 等. 土石混合体变形破坏及细观机理研究的进展[J]. 中国科学:技术科学, 2014, 44(2):172-181. Sun Huafei, Ju Yang, Wang Xiaofei, et al. Review of the study on deformation, failure and the mesomechanisms of rock-soil mixture[J]. Science China Technological Sciences, 2014, 44(2):172-181. (in Chinese)
    [7] 廖秋林. 土石混合体地质成因、结构模型及其力学特性、流固耦合特性研究[D]. 北京:中国科学院地质与地球物理研究所, 2006. Liao Qiulin. Study on the geological formation, structure model, mechanical characteristics and fluid-solid interaction[D]. Beijing:Geology and Geophysics Research Institute of Chinese Academy of Sciences, 2006. (in Chinese)
    [8] Vallejo L E, Lobo G S. The elastic moduli of clays with dispersed oversized particles[J]. Engineering Geology, 2005, 78(1):163-171.
    [9] Vallejo L E, Lobo G S, Seminsky L F. The shear strength of sand-gravel mixtures:laboratory and theoretical analysis[C]. Atlanta, USA. Geo-Congress, 2014:74-83.
    [10] Lee H K, Pyo S H. Multi-level modeling of effective elastic behavior and progressive weakened interface in particulate composites[J]. Composites Science and Technology, 2008, 68(2):387-397.
    [11] 马辉, 高明忠, 张建康, 等. 卵石土等效弹性模量理论预测模型初探[J]. 岩土力学, 2011, 32(12):3642-3646. Ma Hui, Gao Mingzhong, Zhang Jiankang, et al. Theoretical model developed for equivalent elastic modulus estimation of cobblestone-soil matrix[J]. Rock and Soil Mechanics, 2011, 32(12):3642-3646. (in Chinese)
    [12] 胡敏. 砂卵石土物理力学特性及盾构施工相应的数值模拟研究[D]. 广州:华南理工大学, 2014. Hu Min. Numerical method to study the physical and mechanical characteristics of sandy pebble soil and the response caused by shield tunneling[D]. Guangzhou:South China University of Technology, 2014. (in Chinese)
    [13] Yang H, Zhou Z, Wang X C et al. Elastic modulus calculation model of a soil-rock mixture at normal or freezing temperature based on micromechanics approach[J]. Advances in Materials Science and Engineering, 2015, 2015:1-10.
    [14] Simoni A, Houlsby G T. The direct shear strength and dilatancy of sand-gravel mixtures[J]. Geotechnical and Geological Engineering, 2006, 24(3):523-549.
    [15] Xu W J, Hu R L. Study on the shear strength of soil-rock mixture by large scale direct shear test[J]. International Journal of Rock Mechanics & Mining Sciences, 2011, 48(8):1235-1247.
    [16] Coli N, Berry P, Boldini D. In situ non-conventional shear tests for the mechanical characterization of a bimrock[J]. International Journal of Rock Mechanics & Mining Sciences, 2011, 48(1):95-102.
    [17] Gao W, Hu R L, Ibrahim A O, et al. Geomechanical characterization of Zhangmu soil-rock mixture deposit[J]. Geotechnical & Geological Engineering, 2014, 32(5):1329-1338.
    [18] Wang Y, Li X. Experimental study on cracking damage characteristics of a soil and rock mixture by UPV testing[J]. Bulletin of Engineering Geology & the Environment, 2015, 74(3):775-788.
    [19] Hamidi A, Salimi N, Yazdanjou V. Shape and size effects of gravel particles on shear strength characteristics of sandy soils[J]. Geoscience, 2011, 20(80):189-196.
    [20] Mohammad A, Parviz M. Failure patterns of geomaterials with block-in-matrix texture:experimental and numerical evaluation[J]. Arabian Journal of Geosciences, 2014, 7(7):2781-2792.
    [21] 范建彬, 洪宝宁, 刘顺青, 刘鑫. 块石尺寸对土石混合体强度特性的影响研究[J]. 科学技术与工程, 2014, 14(27):268-272. Fan Jianbin, Hong Baoning, Liu Shunqing, Liu Xin. Study on the effect of rock size on strength characteristics of soil-rock mixture[J]. Science Technology and Engineering, 2014, 14(27):268-272. (in Chinese)
    [22] Li X, Liao Q L, He J M. In-situ tests and a stochastic structural model of rock and soil aggregate in the three gorges reservoir area[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(3):702-707.
    [23] 丁秀丽, 张宏明, 黄书岭, 等. 基于细观数值试验的非饱和土石混合体力学特性研究[J]. 岩石力学与工程学报, 2012, 31(8):1553-1566. Ding Xiuli, Zhang Hongming, Huang Shuling, et al. Reaearch on mechanical characteristics of unsaturated soil-rock mixture based on numerical experiments of mesostructure[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(8):1553-1566. (in Chinese)
    [24] Barbero M, Bonini M, Borri B M. Three-dimensional finite element simulations of compression tests on bimrock[C]. Goa, India:In Proceedings of the 12th International Conference of International Association for Computer Methods and Advances in Geomechanics, 2008:31-37.
    [25] Xu W J, Yue Z Q, Hu R L. Study on the mesostructure and mesomechanical characteristics of the soil-rock mixture using digital image processing based finite element method[J]. International Journal of Rock Mechanics & Mining Sciences, 2008, 45(5):749-762.
    [26] Wang Y, Li X, Wu Y. F. Damage evolution analysis of SRM under compression using X-ray tomography and numerical simulation[J]. European Journal of Environmental and Civil Engineering, 2014, 19(4):400-417.
    [27] GB/T 50145-2007, 土的工程分类标准[S]. 北京:中国计划出版社, 2008. GB/T 50145-2007, Standard for engineering classification of soil[S]. Beijing:China Planning Press, 2008. (in Chinese)
    [28] 罗国煜, 李生林. 工程地质学基础[M]. 南京:南京大学出版社, 1990:13-14. Luo Guoyu, Li Shenglin. Basis of engineering geology[M]. Nanjing:Nanjing University Press, 1990:13-14. (in Chinese)
    [29] Weng M C, Chu B L, Ho Y L. Elastoplastic deformation characteristics of gravelly soils[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2013, 139(6):947-955.
    [30] Chang K T, Cheng M C. Estimation of the shear strength of gravel deposits based on field investigated geological factors[J]. Engineering Geology, 2014, 171(3):70-80.
    [31] GB/T 50123-1999, 土工试验方法标准[S]. 北京:中国计划出版社, 1999. GB/T 50123-1999, Standard for soil test method[S]. Beijing:China Planning Press, 1999. (in Chinese)
    [32] Du X L, Jin L, Ma G W. Meso-element equivalent method for the simulation of macro mechanical properties of concrete[J]. International Journal of Damage Mechanics, 2013, 22(5):617-642.
    [33] Unger J F, Eckardt S. Multiscale modeling of concrete[J]. Archives of Computational Methods in Engineering, 2011, 18(3):341-393.
    [34] 金浏. 细观混凝土分析模型与方法研究[D]. 北京:北京工业大学, 2014. Jin Liu. Study on meso-scopic model and analysis method of concrete[D]. Beijing:Beijing University of Technology, 2014. (in Chinese)
    [35] 常颜彬, 原斌斌, 侯军, 等. 低液限黏土三轴剪切试验分析[J]. 水利水电施工, 2012(6):68-71. Chang Yanbin, Yuan Binbin, Hou Jun, et al. Triaxial shear test analysis on Low liquid limit clay[J]. Water Conservancy and Hydropower Construction, 2012(6):68-71. (in Chinese)
    [36] Reuss A. Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitatsbedingung für Einkristalle[J]. Zeitschrift für angewandte Mathematik and Mechanik, 1929, 9:49-58.
    [37] Voigt W. Über Die Beziehung Zwischen Den Beiden Elastizitätskonstanten Isotroper Körper[J]. Wied Ann, 1889, 38:573-587.
  • 期刊类型引用(13)

    1. 冯德銮,刘嘉. 土石混合料填方边坡变形特性的多尺度耦合有限元分析方法. 应用基础与工程科学学报. 2025(02): 362-377 . 百度学术
    2. 张佩,杨承儒,侯世伟,杜修力. 基于内聚力单元的土石混合体细观数值方法. 岩土力学. 2025(05): 1620-1631 . 百度学术
    3. 董侨 ,杜豫川 ,郭猛 ,黄优 ,贾彦顺 ,蒋玮 ,金娇 ,李峰 ,刘成龙 ,刘鹏飞 ,刘状壮 ,罗雪 ,吕松涛 ,马涛 ,沙爱民 ,单丽岩 ,司春棣 ,王朝辉 ,王大为 ,肖月 ,徐慧宁 ,杨旭 ,张久鹏 ,张园 ,朱兴一. 中国路面工程学术研究综述·2024. 中国公路学报. 2024(03): 1-81 . 百度学术
    4. 龚文平,赵晓宇,李馨馨,赵超. 基于细观模拟的土石混合体固结特性研究. 工程力学. 2024(10): 118-127 . 本站查看
    5. 孙永帅,胡瑞林. 不同角度基覆面上土石混合体变形试验研究及对滑坡演化的启示. 地学前缘. 2023(03): 494-504 . 百度学术
    6. 崔熙灿,张凌凯,王建祥. 高堆石坝砂砾石料的细观参数反演及三轴试验模拟. 农业工程学报. 2022(04): 113-122 . 百度学术
    7. 冯德銮,梁仕华. 一个基于细观物理机制的土石混合料抗剪强度理论模型. 工程力学. 2022(06): 134-145 . 本站查看
    8. 张佩,刘泽昊,齐吉琳,杜修力. 卵石倾角对砂卵石地层隧道开挖影响的细观力学研究. 工程力学. 2022(10): 48-60 . 本站查看
    9. 谢亦朋,张聪,阳军生,陈彬,傅金阳,祝志恒. 基于局部粗粒化离散元的冰水堆积体隧道围岩破坏特征与加固措施研究. 岩石力学与工程学报. 2021(03): 576-589 . 百度学术
    10. 宋伟涛,张佩,杜修力. 含石量对砂卵石地层隧道开挖地表沉降影响研究. 地下空间与工程学报. 2021(S1): 359-366+374 . 百度学术
    11. 蒋宇洪,杨娜,白凡. 基于RVE单元的藏式古建石砌体均质化研究. 工程力学. 2020(07): 110-124 . 本站查看
    12. 张佩,杜修力,金浏,路德春,龚秋明. 块石长轴倾角对土石混合体宏观力学性能的影响研究. 工程力学. 2018(09): 64-72 . 本站查看
    13. 林越翔,彭立敏,王翔,雷明锋. 随机土石混合体地层构造方法及其应用. 华中科技大学学报(自然科学版). 2018(04): 35-40+45 . 百度学术

    其他类型引用(24)

计量
  • 文章访问数:  436
  • HTML全文浏览量:  44
  • PDF下载量:  81
  • 被引次数: 37
出版历程
  • 收稿日期:  2016-03-14
  • 修回日期:  2016-11-17
  • 刊出日期:  2017-10-24

目录

    /

    返回文章
    返回