基于响应传递比的桥梁结构工作模态参数识别

孙倩, 颜王吉, 任伟新

孙倩, 颜王吉, 任伟新. 基于响应传递比的桥梁结构工作模态参数识别[J]. 工程力学, 2017, 34(11): 194-201. DOI: 10.6052/j.issn.1000-4750.2016.07.0558
引用本文: 孙倩, 颜王吉, 任伟新. 基于响应传递比的桥梁结构工作模态参数识别[J]. 工程力学, 2017, 34(11): 194-201. DOI: 10.6052/j.issn.1000-4750.2016.07.0558
SUN Qian, YAN Wang-ji, REN Wei-xin. OPERATIONAL MODAL ANALYSIS FOR BRIDGE ENGINEERING BASED ON THE DYNAMIC TRANSMISSIBILITY MEASUREMENTS[J]. Engineering Mechanics, 2017, 34(11): 194-201. DOI: 10.6052/j.issn.1000-4750.2016.07.0558
Citation: SUN Qian, YAN Wang-ji, REN Wei-xin. OPERATIONAL MODAL ANALYSIS FOR BRIDGE ENGINEERING BASED ON THE DYNAMIC TRANSMISSIBILITY MEASUREMENTS[J]. Engineering Mechanics, 2017, 34(11): 194-201. DOI: 10.6052/j.issn.1000-4750.2016.07.0558

基于响应传递比的桥梁结构工作模态参数识别

基金项目: 国家重点研发计划项目(2016YFE0113400);国家自然科学基金项目(51408176,51278163)
详细信息
    作者简介:

    孙倩(1990―),女,安徽六安人,博士生,从事振动信号处理研究(E-mail:sqhorse90@126.com);颜王吉(1985―),男,浙江金华人,研究员,博士,硕导,主要从事振动信号处理、系统识别和健康监测理论研究(E-mail:civilyanwj@gmail.com).

    通讯作者:

    任伟新(1960―),男,湖南长沙人,长江学者特聘教授,博士,博导,主要从事桥梁结构稳定与振动研究(E-mail:renwx@hfut.edu.cn).

  • 中图分类号: TU311.3;TN911.6

OPERATIONAL MODAL ANALYSIS FOR BRIDGE ENGINEERING BASED ON THE DYNAMIC TRANSMISSIBILITY MEASUREMENTS

  • 摘要: 响应传递比在系统极点处与输入无关,并且等于振型比。基于这一独特性质,可以融合多个激励工况下的测试值构建传递比矩阵,并通过奇异值分解技术快速判断出系统的极点,进而根据传递比向量直接估算出振型向量。为了研究该方法在土木工程结构的工作模态参数识别中的应用,首先通过数值算例验证了响应传递比方法可以有效剔除谐波输入引起的虚假模态。此外,通过一环境激励下实桥的振动试验对该方法进行验证,并与有限元方法和随机子空间法结果进行了对比。结果表明,响应传递比方法能够有效地运用于环境激励下桥梁结构的模态参数识别。
    Abstract: The dynamic transmissibility is equal to the ratios of mode shapes when approaching the system poles. On the basis of the unique property, transmissibility matrix is formulated by combining vibration response transmissibility functions under multiple vibration conditions, and the system poles are achieved by taking the Singular Value Decomposition (SVD) for transmissibility matrix. The proposed method is further employed to identify the mode shapes. The aim of this paper is to analyze its application to the modal parameters identification of structures under natural excitation. A numerically simulated beam is used to investigate the robustness of the method to harmonic excitations, and the result indicates that the method reduces the risk to identify the spurious modes induced by the presence of harmonics. Furthermore, the ambient vibration test data of a real bridge is adopted to extract the modal parameters. The field results are compared with those obtained from finite element analysis, and stochastic subspace identification. It has shown that the technique is capable of identifying the modal parameters of real bridges.
  • [1] 禹丹江. 土木工程结构模态参数识别[D]. 福州:福州大学, 2006.Yu Danjiang. Modal parameter identification of civil engineering structures-theory, implementation and applications[D]. Fuzhou:Fuzhou University, 2006. (in Chinese)
    [2] 任伟新. 环境振动系统识别方法的比较分析[J]. 福州大学学报:自然科学版, 2001, 29(6):80-86.Ren Weixin. Comparison of system identification methods using ambient vibration measurements[J]. Journal of Fuzhou University:Natural Science Edition, 2001, 29(6):80-86. (in Chinese)
    [3] 刘宇飞, 辛克贵, 樊健生, 崔定宇. 环境激励下结构模态参数识别方法综述[J]. 工程力学, 2014, 31(4):46-53.Liu Yufei, Xin Kegui, Fan Jiansheng, Cui Dingyu. A review of structure modal identification methods through ambient exciation[J]. Engineering Mechanics, 2014, 31(4):46-53. (in Chinese)
    [4] 谭德先, 周云, 米斯特, 易伟建, 谢利民, 蒋运忠. 环境激励下高层建筑结构模态测试与有限元建模分析[J]. 土木工程学报, 2015, 48(9):41-50.Tan Dexian, Zhou Yun, Mi Site, Yi Weijian, Xie Limin, Jiang Yunzhong. Ambient vibration dynamic test and finite element analysis for high-rise buildings[J]. China Civil Engineering Journal, 2015, 48(9):41-50. (in Chinese)
    [5] 韩建平, 郑沛娟. 环境激励下基于快速贝叶斯FFT的实桥模态参数识别[J]. 工程力学, 2014, 31(4):119-125.Han Jianping, Zheng Peijuan. Modal parameter identification of an actual bridge by fast Bayesian FFT method under ambient excitation[J]. Engineering Mechanics, 2014, 31(4):119-125. (in Chinese)
    [6] 常军, 任永辉, 陈忠汉. 环境激励下结构损伤识别的综合指标法试验研究[J]. 工程力学, 2011, 28(7):130-135.Chang Jun, Ren Yonghui, Chen Zhonghan. Experimental investigation of structural damage identification by combination index method under ambient excitation[J]. Engineering Mechanics, 2011, 28(7):130-135. (in Chinese)
    [7] 李晰, 张德义, 闫维明, 陈彦江. 基于环境激励的钢管混凝土拱桥工作模态识别及修正[J]. 工程力学, 2013, 30(9):81-88.Li Xi, Zhang Deyi, Yan Weiming, Chen Yanjiang. Operational model identification and calibration of CFST arch bridge based on ambient excitation[J]. Engineering Mechanics, 2013, 30(9):81-88. (in Chinese)
    [8] Bendat J S, Piersol A G. Engineering applications of correlation and spectral analysis[M]. 2nd ed. New York, John Wiley & Sons, 1993.
    [9] Brinker R, Zhang L, Andersen P. Modal identification of output-only systems using frequency domain decomposition[J]. Smart Materials and Structures, 2001, 10(3):441-455.
    [10] Van Overschee P, De Moor B. Subspace Identification for linear systems:Theory-implementation-applications[M]. Dordrecht, The Netherlands:Kluwer Academic Publishers, 1996.
    [11] Peeters B, De Roeck G. Reference-based stochastic subspace identification in civil engineering[J]. Inverse Problems in Engineering, 2000, 8(1):47-74.
    [12] Devriendt C, Guillaume P. The use of transmissibility measurements in output-only modal analysis[J]. Mechanical Systems and Signal Processing, 2007, 21(7):2689-2696.
    [13] Devriendt C, De Sitter G, Vanlanduit S, Guillaume P. Operational modal analysis in the presence of harmonic excitations by the use of transmissibility measurements[J]. Mechanical Systems and Signal Processing, 2009, 23(3):621-635.
    [14] Devriendt C, Guillaume P. Identification of modal parameters from transmissibility measurements[J]. Journal of Sound and Vibration, 2008, 314(1):343-356.
    [15] Yan W J, Ren W X. Operational modal parameter identification from power spectrum density transmissibility[J]. Computer-Aided Civil and Infrastructure Engineering, 2012, 27(3):202-217.
    [16] Yan W J, Ren W X. Use of continuous wavelet transmissibility approach for structural operational analysis[J]. Journal of Structural Engineering, ASCE, 2012, 139(9):1444-1456.
    [17] Yan W J, Ren W X. An enhanced power spectral density transmissibility (EPSDT) approach for operational modal analysis:Theoretical and experimental investigation[J]. Engineering Structures, 2015, 102:108-119.
    [18] Welch P D. The use of fast fourier transform for the estimation of power spectra:A method based on time averaging over short, modified periodograms[J]. IEEE Transactions on audio and electroacoustics, 1967, 15(2):70-73.
    [19] 李志刚. 基于模型修正的人行桥动力性能评估[D]. 长沙:中南大学, 2013.Li Zhigang. Dynamic assessment of pedestrian bridge by model updating[D]. Changsha:Central South University, 2013. (in Chinese)
    [20] 魏锦辉. 基于静动力数据的桥梁有限元模型修正研究[D]. 长沙:中南大学, 2015.Wei Jinhui. Finite element model updating of bridge structures based on static and dynamic test data[D]. Changsha:Central South University, 2015. (in Chinese)
    [21] 万华平. 结构动力不确定性及其随机模型修正方法研究[D]. 长沙:中南大学, 2015.Wan Huaping. Study on uncertainty in structural dynamics and stochastic model updating[D]. Changsha:Central South University, 2015. (in Chinese)
  • 期刊类型引用(9)

    1. 邵玉佩,刘莉. 基于时域响应传递率的时变结构模态辨识方法. 战术导弹技术. 2023(01): 22-30 . 百度学术
    2. 杨志林,罗漪,王海峰. 基于数据库的优化随机子空间法识别精度评价. 工程力学. 2023(04): 116-128+192 . 本站查看
    3. 胡俊亮,叶仲韬,吴杰. 基于动态测试数据的旧桥系统参数识别. 市政技术. 2022(04): 1-5+35 . 百度学术
    4. 高云凯,马超,段少东,申振宇. 车身焊装钢结构生产平台动力特性优化. 建筑钢结构进展. 2021(04): 93-100 . 百度学术
    5. 陈涛,褚志刚,李沛然,彭川,杨亮. 基于伪频响函数矩阵法的运行模态分析方法. 机械工程学报. 2021(20): 266-276 . 百度学术
    6. 秦超,颜王吉,孙倩,任伟新. 基于贝叶斯功率谱变量分离方法的实桥模态参数识别. 工程力学. 2019(10): 212-222 . 本站查看
    7. 孙倩,颜王吉,任伟新. 基于响应功率谱传递比的桥梁结构工作模态参数识别方法. 中国公路学报. 2019(11): 83-90 . 百度学术
    8. 颜王吉,王朋朋,孙倩,任伟新. 基于振动响应传递比函数的系统识别研究进展. 工程力学. 2018(05): 1-9+26 . 本站查看
    9. 姚艳春,赵雪彦,杜岳峰,宋正河,尹宜勇,毛恩荣,刘帆. 考虑质量时变的收获机械工作模态分析与试验. 农业工程学报. 2018(09): 83-94 . 百度学术

    其他类型引用(14)

计量
  • 文章访问数:  369
  • HTML全文浏览量:  53
  • PDF下载量:  49
  • 被引次数: 23
出版历程
  • 收稿日期:  2016-07-20
  • 修回日期:  2016-11-12
  • 刊出日期:  2017-11-24

目录

    /

    返回文章
    返回