桥梁应变与挠度动力放大系数的大小关系研究

邓露, 段林利, 邹启令

邓露, 段林利, 邹启令. 桥梁应变与挠度动力放大系数的大小关系研究[J]. 工程力学, 2018, 35(1): 126-135. DOI: 10.6052/j.issn.1000-4750.2016.08.0654
引用本文: 邓露, 段林利, 邹启令. 桥梁应变与挠度动力放大系数的大小关系研究[J]. 工程力学, 2018, 35(1): 126-135. DOI: 10.6052/j.issn.1000-4750.2016.08.0654
DENG Lu, DUAN Lin-li, ZOU Qi-ling. COMPARISON OF DYNAMIC AMPLIFICATION FACTORS CALCULATED FROM BRIDGE STRAIN AND DEFLECTION[J]. Engineering Mechanics, 2018, 35(1): 126-135. DOI: 10.6052/j.issn.1000-4750.2016.08.0654
Citation: DENG Lu, DUAN Lin-li, ZOU Qi-ling. COMPARISON OF DYNAMIC AMPLIFICATION FACTORS CALCULATED FROM BRIDGE STRAIN AND DEFLECTION[J]. Engineering Mechanics, 2018, 35(1): 126-135. DOI: 10.6052/j.issn.1000-4750.2016.08.0654

桥梁应变与挠度动力放大系数的大小关系研究

基金项目: 国家自然科学基金项目(51208189);湖南省杰出青年科学基金项目(14JJ1014)
详细信息
    作者简介:

    段林利(1994-),女,湖南人,硕士生,主要从事车桥耦合振动研究(E-mail:dlinli9411@gmail.com);邹启令(1992-),男,湖南人,博士生,主要从事车桥耦合振动研究(E-mail:zql0419@gmail.com).

    通讯作者:

    邓露(1984-),男,湖南人,教授,博士,博导,副院长,主要从事车桥耦合振动、桥梁疲劳研究(E-mail:denglu@hnu.edu.cn).

  • 中图分类号: U441+.3

COMPARISON OF DYNAMIC AMPLIFICATION FACTORS CALCULATED FROM BRIDGE STRAIN AND DEFLECTION

  • 摘要: 比较了简支梁桥和连续梁桥的应变和挠度动力放大系数的大小关系。首先对作用有移动常量力的简支梁和连续梁进行理论推导,分别得到了应变和挠度动力放大系数并进行了比较。为考虑动力车辆荷载影响,采用移动弹簧质量作为车辆模型建立了车桥耦合振动模型进行数值模拟。理论推导和数值模拟的结果均表明:应变动力放大系数基本小于挠度动力放大系数;两者比值受很多因素影响,其中计算桥梁响应所用的桥梁模态阶数对比值的影响较大。
    Abstract: A comparison of dynamic amplification factors calculated from bridge strain and deflection of a simply-supported beam and a continuous beam is conducted. Firstly, the strain and deflection dynamic amplification factors are theoretically derived and compared based on a simply-supported beam and a continuous beam under the action of a constant moving force. To consider the effect of dynamic vehicle loading, numerical simulations are performed using a developed vehicle-bridge coupled model while adopting a moving spring mass vehicle model. The results from both the theoretical analysis and numerical simulation show that the strain dynamic amplification factor is less than the deflection dynamic amplification factor and that their ratio is influenced by a number of factors, among which the number of vibration modes used in calculating the bridge responses has a significant influence.
  • [1] Deng L, Yu Y, Zou Q, et al. State-of-the-art review of dynamic impact factors of highway bridges[J]. Journal of Bridge Engineering, 2014, doi:10.1061/(ASCE)BE. 1943-5592.0000672, 04014080.
    [2] Majka M, Hartnett M. Effects of speed, load and damping on the dynamic response of railway bridges and vehicles[J]. Computers and Structures, 2008, 86(6):556-572.
    [3] Huang D. Dynamic analysis of steel curved box girder bridges[J]. Journal of Bridge Engineering, 2001, 6(6):506-513.
    [4] Li H, Wekezer J, Kwasniewski L. Dynamic response of a highway bridge subjected to moving vehicles[J]. Journal of Bridge Engineering, 2008, 13(5):439-448.
    [5] Yu Y, Deng L, Wang W, et al. Local impact analysis for deck slabs of prestressed concrete box-girder bridges subject to vehicle loading[J]. Journal of Vibration and Control, 2015, doi: 10.1177/1077546315575434.
    [6] 李忠献, 陈锋. 曲线箱梁桥的车桥相互作用分析[J]. 工程力学, 2007, 24(11):93-99.
    Li Zhongxian, Chen Feng. Analysis of interaction between vehicle and bridge with curved box girder[J]. Engineering Mechanics, 2007, 24(11):93-99. (in Chinese)
    [7] Fafard M, Laflamme M, Savard M, et al. Dynamic analysis of existing continuous bridge[J]. Journal of Bridge Engineering, 1998, 3(1):28-37.
    [8] Aluri S, Jinka C, Gangarao H V S. Dynamic response of three fiber reinforced polymer composite bridges[J]. Journal of Bridge Engineering, 2005, 10(6):722-730.
    [9] 周勇军, 蔡军哲, 石雄伟, 等. 基于加权法的桥梁冲击系数计算方法[J]. 交通运输工程学报, 2013, 13(4):29-36.
    Zhou Yongjun, Cai Junzhe, Shi Xiongwei, et al. Computing method of bridge impact factor based on weighted method[J]. Journal of Traffic and Transportation Engineering, 2013, 13(4):29-36. (in Chinese)
    [10] Chang D, Lee H. Impact factors for simple-span highway girder bridges[J]. Journal of Structural Engineering, 1994, 120(3):704-715.
    [11] Conte J P. Random vibration analysis of dynamic vehicle-bridge interaction due to road unevenness[J]. Journal of Engineering Mechanics, 2012, 138(7):816-825.
    [12] Zou Q, Deng L, Guo T, et al. Comparative study of different numerical models for vehicle-bridge interaction analysis[J]. International Journal of Structural Stability and Dynamics, 2016, 16(9):1636-1643.
    [13] Ding L, Hao H, Zhu X. Evaluation of dynamic vehicle axle loads on bridges with different surface conditions[J]. Journal of Sound and Vibration, 2009, 323(3/4/5):826-848.
    [14] 邓露, 王维. 公路桥梁动力冲击系数研究进展[J]. 动力学与控制学报, 2016, 14(4):289-300.
    Deng Lu, Wang Wei. Research progress on dynamic impact factors of highway bridges[J]. Journal of Dynamics and Control, 2016, 14(4):289-300. (in Chinese)
    [15] Kirkegaard P H, Nielsen S R K, Enevoldsen I. Heavy vehicles on minor highway bridges-calculation of dynamic impact factors from selected crossing scenarios[R]. Paper No172. Aalborg, Denmark:Dept. of Building Technology and Structural Engineering, Aalborg Univ., 1997:1-19.
    [16] 邓建良, 吴定俊, 李奇. 简支梁桥动力系数的移动荷载列分析[J]. 工程力学, 2012, 29(10):177-183.
    Deng Jianliang, Wu Dingjun, Li Qi. Dynamic factor analysis of simple-supported bridges using discrete moving load model[J]. Engineering Mechanics, 2012, 29(10):177-183. (in Chinese)
    [17] Shi X, Cai C S, Chen S. Vehicle induced dynamic behavior of short-span slab bridges considering effect of approach slab condition[J]. Journal of Bridge Engineering, 2008, 13(1):83-92.
    [18] Xu Y L, Li Q, Wu D J, et al. Stress and acceleration analysis of coupled vehicle and long-span bridge systems using the mode superposition method[J]. Engineering Structures, 2010, 32(5):1356-1368.
    [19] Xia H, Zhang N, Guo W W. Analysis of resonance mechanism and conditions of train-bridge system[J]. Journal of Sound and Vibration, 2006, 297(3/4/5):810-822.
  • 期刊类型引用(28)

    1. 王朋,尤学辉,史庆轩,陶毅,戎翀,黄杰. UHPC免拆模板钢筋混凝土柱抗震性能参数分析及承载力计算. 建筑科学与工程学报. 2025(01): 41-50 . 百度学术
    2. 王彦朋,张恒,聂晓梅,张芳芳. GFRP筋超高性能混凝土梁受弯性能有限元分析. 混凝土与水泥制品. 2025(02): 63-69 . 百度学术
    3. 王朋,尤学辉,黄杰,史庆轩,陶毅,王秋维. 拼接成型UHPC免拆模板钢筋混凝土柱的抗震性能. 哈尔滨工业大学学报. 2024(01): 103-116 . 百度学术
    4. 姜立春,李金柱. 倾斜矿体采空区非对称顶板-矿柱结构体协同承载机理. 中国有色金属学报. 2024(01): 329-343 . 百度学术
    5. 秦朝刚,吴涛,刘伯权,王博,李寓. 预制UHPC-RAC组合梁受弯性能试验与理论计算. 复合材料学报. 2024(03): 1420-1435 . 百度学术
    6. 王佳玮,孟醒. UHPC梁极限承载力计算方法研究. 城市建设理论研究(电子版). 2024(11): 78-80 . 百度学术
    7. 卜良桃,刘港平. RPC应力-应变曲线系数与塑性损伤因子无量纲化计算模型研究. 工程力学. 2024(05): 120-133 . 本站查看
    8. 秦朝刚,杜锦霖,吴涛,刘伯权. U型UHPC与再生混凝土组合梁受弯性能分析. 建筑科学. 2024(03): 110-120 . 百度学术
    9. 许有胜,杨纪豪,夏樟华,孙康平. UHPC预制拼装综合管廊的抗弯性能试验. 福州大学学报(自然科学版). 2024(03): 353-361 . 百度学术
    10. 常亚峰,尹文哲,侯亚鹏,曹小杉,师俊平,梁兴文. 超高性能混凝土预制板-叠合剪力墙抗震性能研究. 地震工程与工程振动. 2024(03): 96-107 . 百度学术
    11. 孙永新,蔺鹏臻,杨子江. 考虑黏结-滑移效应的UHPC梁钢筋应力计算方法. 西南交通大学学报. 2024(05): 1058-1067 . 百度学术
    12. 邓明科,姚昕,张阳玺,靳梦娜,曹继涛. 基于梁式试验的UHPC-高强钢筋搭接黏结性能. 复合材料学报. 2024(10): 5527-5539 . 百度学术
    13. 孙永新,蔺鹏臻,杨子江,冀伟. 考虑黏结-滑移效应的UHPC梁裂缝宽度计算方法. 吉林大学学报(工学版). 2024(09): 2600-2608 . 百度学术
    14. 李艳艳,贾会斌,赵川,武凯,刘平,苑宗双. 超低能耗建筑夹芯保温墙板受弯性能试验研究. 建筑科学. 2024(11): 9-18 . 百度学术
    15. 刘祖强,任甭优,薛建阳. 高强型钢超高性能混凝土梁受弯性能试验研究及有限元分析. 工程力学. 2023(04): 102-115 . 本站查看
    16. 刘晓银,曹锋. 第二类T形截面梁配筋设计的尺寸效应研究. 甘肃科技纵横. 2023(03): 59-62+87 . 百度学术
    17. 王凌波,陈杰,杨永清,朱钊,孙宝林,舒灏. 双折线先张预应力高强混凝土Ⅰ型梁抗弯性能足尺模型试验. 中国公路学报. 2023(07): 169-179 . 百度学术
    18. 李新星,周泉,李水生. 基于UHPC-钢筋错位连接的预制装配式混凝土梁抗弯性能研究. 混凝土与水泥制品. 2023(09): 47-53 . 百度学术
    19. 赵盛杰,张运清,孙涛. 非一致性收缩徐变对小箱梁桥腹板竖向开裂的影响. 山东交通学院学报. 2023(04): 122-126+162 . 百度学术
    20. 蔺鹏臻,赵鸿伟,马俊军. 铁路UHPC梁的正截面抗弯承载力计算公式及应用. 铁道工程学报. 2022(05): 33-38+72 . 百度学术
    21. 蒋盛钢. 地铁车站装配式轨顶风道力学性能研究. 建筑结构. 2022(S2): 1673-1677 . 百度学术
    22. 樊健生,王哲,杨松,陈钒,丁然. 超高性能混凝土板冲切与弯曲性能研究. 工程力学. 2021(04): 30-43 . 本站查看
    23. 刘沐宇,赵刚,丁庆军,张强. 轻质超高性能混凝土(LUHPC)梁抗弯性能试验. 武汉理工大学学报(交通科学与工程版). 2021(03): 524-529 . 百度学术
    24. 孙宗磊,杨少军,刘琛,高明昌,吕梁. 基于UHPC板和EPS耗能层的落石冲击力研究. 铁道标准设计. 2021(07): 88-92 . 百度学术
    25. 韩东,凌俊. 超高性能混凝土在桥梁快速维护中的应用. 人民交通. 2020(03): 69+71 . 百度学术
    26. 毕继红,霍琳颖,乔浩玥,赵云. 单向受拉状态下的钢纤维混凝土本构模型. 工程力学. 2020(06): 155-164 . 本站查看
    27. 卜一之,刘欣益,张清华. 基于截面应力法的钢-UHPC组合板初裂荷载计算方法研究. 工程力学. 2020(10): 209-217 . 本站查看
    28. 刘琛,陈应陶,杨少军,高明昌,王飞华. 兰张高铁十八里堡特大桥56 m UHPC组合简支梁设计研究. 铁道标准设计. 2020(11): 57-61 . 百度学术

    其他类型引用(35)

计量
  • 文章访问数:  335
  • HTML全文浏览量:  42
  • PDF下载量:  44
  • 被引次数: 63
出版历程
  • 收稿日期:  2016-08-28
  • 修回日期:  2017-04-15
  • 刊出日期:  2018-01-24

目录

    /

    返回文章
    返回