核电工程双钢板混凝土组合剪力墙面内受弯性能研究

李小军, 李晓虎

李小军, 李晓虎. 核电工程双钢板混凝土组合剪力墙面内受弯性能研究[J]. 工程力学, 2017, 34(9): 43-53. DOI: 10.6052/j.issn.1000-4750.2016.08.0665
引用本文: 李小军, 李晓虎. 核电工程双钢板混凝土组合剪力墙面内受弯性能研究[J]. 工程力学, 2017, 34(9): 43-53. DOI: 10.6052/j.issn.1000-4750.2016.08.0665
LI Xiao-jun, LI Xiao-hu. STUDY ON IN-PLANE FLEXURAL BEHAVIOR OF DOUBLE STEEL PLATES AND CONCRETE INFILL COMPOSITE SHEAR WALLS FOR NUCLEAR ENGINEERING[J]. Engineering Mechanics, 2017, 34(9): 43-53. DOI: 10.6052/j.issn.1000-4750.2016.08.0665
Citation: LI Xiao-jun, LI Xiao-hu. STUDY ON IN-PLANE FLEXURAL BEHAVIOR OF DOUBLE STEEL PLATES AND CONCRETE INFILL COMPOSITE SHEAR WALLS FOR NUCLEAR ENGINEERING[J]. Engineering Mechanics, 2017, 34(9): 43-53. DOI: 10.6052/j.issn.1000-4750.2016.08.0665

核电工程双钢板混凝土组合剪力墙面内受弯性能研究

基金项目: 国家自然科学基金项目(51408255);国家科技重大专项项目(2013ZX06002001);国家自然科学基金创新研究群体科学基金项目(51421005)
详细信息
    作者简介:

    李小军(1965-),男,湖南人,教授,博士,博导,主要从事强震动观测、防灾减灾工程等研究(E-mail:beerli@vip.sina.com).

    通讯作者:

    李晓虎(1986-),男,河南人,博士,主要从事结构抗震研究(E-mail:xiaohu12066@126.com).

  • 中图分类号: TU398+.2

STUDY ON IN-PLANE FLEXURAL BEHAVIOR OF DOUBLE STEEL PLATES AND CONCRETE INFILL COMPOSITE SHEAR WALLS FOR NUCLEAR ENGINEERING

  • 摘要: 开展了核电厂屏蔽厂房双钢板混凝土组合剪力墙的结构形式的10个缩尺试件低周往复拟静力试验,研究了钢板厚度、栓钉间距、竖向荷载以及加劲肋设置等因素对双钢板混凝土组合剪力墙受弯承载力的影响。分析结果表明:钢板厚度、竖向荷载和加劲肋的设置都对剪力墙的受弯承载力有很大的影响,而栓钉间距对其影响不大。采用ABAQUS有限元软件对双钢板混凝土组合剪力墙试件进行了数值模拟,通过比较有限元计算结果和试验结果发现两者在受弯承载力上能够较好吻合,但有限元计算得出的曲线没有明显的下降段。结合试验和有限元数值模拟,提出了双钢板混凝土组合剪力墙受弯承载力的计算公式。研究为以后双钢板混凝土组合剪力墙的设计应用提供理论依据。
    Abstract: A test of 10 scaled models was performed on double steel plates and concrete infill composite shear walls for nuclear engineering, and the influence of several parameters including the thickness of the steel plate, stud spacing, vertical load, stiffener on in-plane flexural behavior of double steel plate and concrete infill composite shear walls (SCSW) were studied based on the test results. The results indicate that the thickness of the steel plate, vertical load and stiffener all have a great effect on the in-plane flexural behavior of SCSW while the stud spacing has little impact. The SCSW specimens were simulated by using the finite element software ABAQUS. It is found that both the finite element calculation values and the test values of the flexural behavior of SCSW had a good agreement, but the curves of the finite element calculation did not have apparent declination. Combined with the experimental results and finite element numerical simulation, a calculation formula of flexural behavior of SCSW was proposed. This study provides a theoretical basis for the design and application of composite shear walls with double steel plates and filled concrete.
  • [1] Braverman J, Morante R, Hofmayer C. Assessment of modular construction for safety-related structures at advanced nuclear power plants[S]. U.S. Nuclear Regulatory Commision, Washington D C, USA, 1997.
    [2] Takeuchi M, Narikawa M, Matsuo I, et al. Study on a concrete filled structure for nuclear power plants[J]. Nuclear Engineering & Design, 1998, 179(2):209-223.
    [3] Tokyo Electric Power Company (TEPCO). Improved construction and project management[EB/OL]. www.Inspi.Ufl.Edu/ICAPP/plenary/5Construction-omoto.ppt, 2001.
    [4] Ozaki M, Akita S, Osuga H, et al. Study on steel plate reinforced concrete panels subjected to cyclic in-plane shear[J]. Nuclear Engineering & Design, 2004, 228(1/2/3):225-244.
    [5] JEAG 4618-05. Technical guidelines for aseismic design of steel plate reinforced concrete structures-Buildings and structures[S]. Nuclear Standards Committee, Japan Electric Association, Transactions of JEAG 4618, Translated from Japanese by Obayashi Company and Westinghouse Electric Company, 2005.
    [6] KEPIC-SNG. Specification for safety-related steel plate concrete structures for nuclear facilities[S]. Board of KEPIC Policy, Structural Committee, Korea Electric Association, 2010.
    [7] Kim W, Lee S J, Jung R Y, Kim M. Damping values for seismic design of nuclear power plant SC structures[C]//Proceedings of the 20th IASMiRT Conference, SMiRT 20, August 9-14, Espoo, Finland, 2009.
    [8] Choi B J, Han H S. An experiment on compressive profile of the unstiffened steel plate-concrete structures under compression loading[J]. Steel & Composite Structures, 2009, 9(6):519-534.
    [9] Hong S G, Lee K J, Park D S, Ham K W, Lee H W. Out-of-plane shear strength of steel-plate-reinforced concrete walls dependent on bond behavior[C]//Proceedings of the 20th IASMiRT Conference, SMiRT 20, Div-6, August 9-14, Espoo, Finland, 2009.
    [10] AISC Proposal APPENDIX N9. Specification for design of steel-plate composite (SC) walls in safety-related structures for nuclear facilities[S]. Chicago, IL, 2010.
    [11] Sener K C, Varma A H, Booth P N, et al. Seismic behavior of a containment internal structure consisting of composite SC walls[J]. Nuclear Engineering & Design, 2015, 295:804-816.
    [12] Sener K C, Varma A H, Ayhan D. Steel-plate composite (SC) walls:Out-of-plane flexural behavior, database, and design[J]. Journal of Constructional Steel Research, 2015, 108:46-59.
    [13] 丁朝辉, 江欢成, 曾菁, 等. 双钢板-混凝土组合墙的大胆尝试:盐城电视塔结构设计[J]. 建筑结构, 2011, 41(12):87-91. Ding Zhaohui, Jiang Huancheng, Zeng Jing, et al. An innovative application of SCS composite wall:Structural design of Yancheng TV Tower[J]. Building Structure, 2011, 41(12):87-91. (in Chinese)
    [14] 周定, 韩建强, 杨汉伦, 等. 广州塔设计[J]. 建筑结构, 2012, 42(6):1-12. Zhou Ding, Han Jianqiang, Yang Hanlun, et al. Structural design of Guangzhou Tower[J]. Building Structure, 2012, 42(6):1-12. (in Chinese)
    [15] 聂建国, 卜凡民, 樊健生. 高轴压比、低剪跨比双钢板-混凝土组合剪力墙拟静力试验研究[J]. 工程力学, 2013, 30(6):60-66. Nie Jianguo, Bu Fanmin, Fan Jiansheng. Quasi-static test on low shear-span ratio composite shear wall with double steel plates and infill concrete under high axial compression ratio[J]. Engineering Mechanics, 2013, 30(6):60-66. (in Chinese)
    [16] 马恺泽, 刘伯权, 鄢红良, 等. 高轴压比双层钢板-高强混凝土组合剪力墙抗震性能试验研究[J]. 工程力学, 2014, 31(5):218-224. Ma Kaize, Liu Boquan, Yan Hongliang, et al. Experimental investigation on aseismic behavior of double steel high strength concrete shear walls with high axial load ratio[J]. Engineering Mechanics, 2014, 31(5):218-224. (in Chinese)
    [17] 吴丽丽, 李佳蔚, 邢瑞娇, 等. 钢板-混凝土组合板抗剪承载性能的试验研究与数值分析[J]. 工程力学, 2016, 33(10):173-182. Wu Lili, Li Jiawei, Xing Ruijiao, et al. Experimental study and numerical simulation of the shear capacity of steel plate-concrete composite slabs[J]. Engineering Mechanics, 2016, 33(10):173-182. (in Chinese)
    [18] 熊峰, 何涛, 周宁. 核电站双钢板混凝土剪力墙抗剪强度研究[J]. 湖南大学学报(自然科学版), 2015, 42(9):33-41. Xiong Feng, He Tao, Zhou Ning. Study on the shear strength of double steel plate composite shear wall in nuclear plant[J]. Journal of Hunan University (Natural Sciences), 2015, 42(9):33-41. (in Chinese)
    [19] 张有佳, 李小军. 双钢板混凝土墙体构件抗震性能试验研究[J]. 武汉大学学报(工学版), 2015, 48(5):658-665. Zhang Youjia, Li Xiaojun. Experimental research on seismic behavior of wall component with double steel plate and infill concrete[J]. Engineering Journal of Wuhan University, 2015, 48(5):658-665. (in Chinese)
    [20] 李晓虎, 李小军, 申丽婷, 刘进. 核岛结构双钢板混凝土组合剪力墙低周往复试验研究[J]. 北京工业大学学报, 2016, 42(10):1498-1508. Li Xiaohu, Li Xiaojun, Shen Liting, Liu Jin. Experimental study of composite shear walls with double steel plates and filled concrete for a nuclear island structure under low cyclic loading[J]. Journal of Beijing university of technology, 2016, 42(10):1498-1508. (in Chinese)
    [21] 马晓伟, 聂建国, 陶慕轩, 等. 双钢板-混凝土组合剪力墙压弯承载力数值模型及简化计算公式[J]. 建筑结构学报, 2013, 34(4):99-106. Ma Xiaowei, Nie Jianguo, Tao Muxuan, et al. Numerical model and simplified formula of axial force-moment capacity of composite shear wall with double steel plates and infill concrete[J]. Journal of Building Structures, 2013, 34(4):99-106. (in Chinese)
    [22] 曹万林, 王敏, 张建伟, 等. 钢管混凝土边框剪力墙抗震试验及承载力计算[J]. 北京工业大学学报, 2008, 34(12):1291-1297. Cao Wanlin, Wang Min, Zhang Jianwei, et al. Seismic experiment and load-carrying capacity calculation of shear wall with concrete filled steel tube columns[J]. Journal of Beijing University of Technology, 2008, 34(12):1291-1297. (in Chinese)
    [23] 杨悦. 核工程双钢板-混凝土结构抗震性能研究[D]. 北京:清华大学, 2015:61-69. Yang Yue. Seismic behavior of double steel-concrete composite structures in nuclear engineering[D]. Beijing:Tsinghua University:61-69. (in Chinese)
  • 期刊类型引用(16)

    1. 杨耀堂,王蕊,赵晖,侯川川. 火灾下双钢板-混凝土组合墙抗冲击机理分析与挠度预测. 爆炸与冲击. 2024(01): 13-27 . 百度学术
    2. 彭修宁,李新宇,林焯铭,杨旭杰. 基于修正Park-Ang模型的SCS剪力墙损伤指数研究. 地震工程与工程振动. 2023(01): 34-42 . 百度学术
    3. 张金铎,游业刚,张高歌,张纪刚. 双钢板组合剪力墙研究综述. 低温建筑技术. 2023(01): 68-72+77 . 百度学术
    4. 赵唯以,高泽鹏,王琳,陈沛涵. 集中荷载作用下四边简支双钢板混凝土组合板的力学性能研究. 工程力学. 2022(03): 158-170+192 . 本站查看
    5. 刘旭晨,李小军,王晓辉,陈苏,于跃,沈亮. 核电厂转运-清洗间地震反应分析. 震灾防御技术. 2022(01): 124-131 . 百度学术
    6. 刘学春,宋杰,陈学森,强申. 带C形钢边框装配式钢筋混凝土预制楼板试验研究. 工程力学. 2022(S1): 312-319 . 本站查看
    7. 彭修宁,林焯铭,黄展业,李新宇. 双钢板混凝土剪力墙基于性能的变形指标限值研究. 地震工程与工程振动. 2022(04): 80-91 . 百度学术
    8. 邓明科,刘俊超,张阳玺,刘海勃,景武斌. 钢板-高延性混凝土组合低矮剪力墙抗震性能试验研究. 工程力学. 2021(03): 40-49 . 本站查看
    9. 孙运轮,孔思宇,陈岩,樊健生,丁然. 核电工程双钢板组合墙-筏板基础插筋式锚固节点拉拔性能试验研究. 工程力学. 2021(03): 86-97+147 . 本站查看
    10. 闫培雷,孙柏涛. 基于环境激励法的高层钢筋混凝土剪力墙结构自振周期经验公式研究. 工程力学. 2019(02): 87-95 . 本站查看
    11. 俞逸舟,宋晓冰,李林家. 钢板混凝土组合结构试验与理论研究现状. 混凝土. 2019(10): 54-61 . 百度学术
    12. 刘晶波,王冬亮,王宗纲,王菲. 核工程双钢板-混凝土组合剪力墙面内受剪性能试验研究. 地震工程与工程振动. 2019(05): 19-27 . 百度学术
    13. 王晓强,陶慕轩. 新型海上超大型钢-混凝土组合箱式浮体平台结构设计与分析. 工程力学. 2019(11): 147-157 . 本站查看
    14. 魏文晖,楚尚,朱利伟,周俊. 新型装配式套筒灌浆柱柱节点抗震性能研究. 武汉理工大学学报. 2019(04): 40-47 . 百度学术
    15. 魏文晖,蒋功成,程亮,尹昭. 新型装配式梁柱节点抗震性能研究. 武汉理工大学学报. 2019(05): 38-44 . 百度学术
    16. 葛琪,熊峰,何涛. 钢板混凝土组合墙试验和有限元分析. 东南大学学报(自然科学版). 2018(05): 885-895 . 百度学术

    其他类型引用(30)

计量
  • 文章访问数:  381
  • HTML全文浏览量:  45
  • PDF下载量:  105
  • 被引次数: 46
出版历程
  • 收稿日期:  2016-08-30
  • 修回日期:  2016-12-14
  • 刊出日期:  2017-09-24

目录

    /

    返回文章
    返回