基于两相随机介质的混凝土破坏全过程模拟

梁诗雪, 李杰

梁诗雪, 李杰. 基于两相随机介质的混凝土破坏全过程模拟[J]. 工程力学, 2018, 35(2): 116-123. DOI: 10.6052/j.issn.1000-4750.2016.09.0748
引用本文: 梁诗雪, 李杰. 基于两相随机介质的混凝土破坏全过程模拟[J]. 工程力学, 2018, 35(2): 116-123. DOI: 10.6052/j.issn.1000-4750.2016.09.0748
LIANG Shi-xue, LI Jie. A TWO-PHASE RANDOM MEDIUM MODEL FOR SIMULATING THE FAILURE PROCESS OF CONCRETE[J]. Engineering Mechanics, 2018, 35(2): 116-123. DOI: 10.6052/j.issn.1000-4750.2016.09.0748
Citation: LIANG Shi-xue, LI Jie. A TWO-PHASE RANDOM MEDIUM MODEL FOR SIMULATING THE FAILURE PROCESS OF CONCRETE[J]. Engineering Mechanics, 2018, 35(2): 116-123. DOI: 10.6052/j.issn.1000-4750.2016.09.0748

基于两相随机介质的混凝土破坏全过程模拟

基金项目: 国家自然科学基金项目(90715033,U1134209);浙江省自然科学基金青年项目(LQ18E080009)
详细信息
    作者简介:

    梁诗雪(1987―),女,湖南人,讲师,博士,主要从事混凝土随机损伤力学、混凝土多尺度模拟研究(E-mail:liangshixue0716@126.com).

    通讯作者:

    李杰(1957―),男,河南人,教授,博士,博导,主要从事混凝土随机损伤力学、随机动力系统分析与生命线工程抗灾研究(E-mail:lijie@tongji.edu.cn).

  • 中图分类号: TU528.1

A TWO-PHASE RANDOM MEDIUM MODEL FOR SIMULATING THE FAILURE PROCESS OF CONCRETE

  • 摘要: 通过两相随机介质对混凝土细观结构进行建模,给出了混凝土破坏全过程模拟。首先,为了反映混凝土水泥砂浆和骨料的随机分布,引入新近发展的两相介质随机场对混凝土进行建模。采用随机点集生成随机有限元与内聚单元,以考虑裂纹分布的随机性,形成混凝土材料破坏分析的数值模型。数值模拟给出了混凝土单轴受拉裂纹开展全过程。数值模拟结果表明:当骨料断裂能明显大于水泥砂浆断裂能时,采用两相随机介质,能够较好地描述在受拉状态下,混凝土裂纹主要产生于水泥砂浆及骨料以及水泥砂浆的界面处,较少骨料破坏,这一典型特征。最后,通过模拟所得的均匀化应力-应变关系与混凝土单轴受拉试验结果对比,进一步验证了该文所给出的两相随机介质模拟的正确性。
    Abstract: A two-phase random medium model is proposed to simulate the complex cracking process and failure mode of concrete. To represent the random distribution of mortar and aggregates of concrete, a newly developed two-phase random field is introduced to reconstruct the realistic concrete samples. The finite element and adjacent cohesive element, which can be considered as the potential cracking path, are generated for the numerical model. The complete cracking process and failure of concrete samples under uniaxial tension is proposed in the numerical simulations. By applying the two-phase random medium model, the main characteristics of concrete failure that cracks usually happen in the mortar rather than the aggregates can be well captured when the fracture energy of the aggregates are significantly larger than the mortar. The predicted stress-strain relationship agrees well with the experimental results, manifesting the validity of the proposed two-phase random medium simulation of concrete.
  • [1] 李杰, 陈建兵, 吴建营. 混凝土随机损伤力学[M]. 北京: 科学出版社, 2014: 1-21. Li Jie, Chen Jianbing, Wu Jianying. Stochastic damage mechanics of concrete structures [M]. Beijing: Science Press, 2014: 1-21. (in Chinese)
    [2] 李杰. 混凝土随机损伤力学的初步研究[J]. 同济大学学报(自然科学版), 2004, 32(10): 1270-1277. Li Jie. Research on the stochastic damage mechanics for concrete material and structures [J]. Journal of Tongji University: Natural Science, 2004, 32(10): 1270-1277. (in Chinese)
    [3] 秦武, 杜成斌. 基于CT切片的三维混凝土细观层次力学建模[J]. 工程力学, 2012, 29(7): 186-193. Qin Wu, Du Chengbin. Meso-level model of threedimensional concrete based on the CT slices [J]. Engineering Mechanics, 2012, 29(7): 186-193. (in Chinese)
    [4] 于庆磊, 杨天鸿, 唐世斌, 等. 基于CT的准脆性材料三维结构重建及应用研究[J]. 工程力学, 2015, 32(11): 51-62. Yu Qinglei, Yang Tianhong, Tang Shibin, et al. The 3D reconstruction method for quasi-brittle material structure and application [J]. Engineering Mechanics, 2015, 32(11): 51-62. (in Chinese)
    [5] Garboczi E J. Three-dimensional mathematical analysis of particle shape using X-ray tomography and spherical harmonics: Application to aggregates used in concrete[J]. Cement and Concrete Research, 2002, 32(10): 1621-1638.
    [6] 高政国, 刘光廷. 二维混凝土随机骨料模型研究[J]. 清华大学学报: 自然科学版, 2003, 43(5): 710-714. Gao Zhengguo, Liu Guangting. Two-dimensional random aggregate structure for concrete [J]. Journal of Tsinghua University (Science and Technology), 2003, 43(5): 710-714. (in Chinese)
    [7] 张剑, 金南国, 金贤玉, 等. 混凝土多边形骨料分布的数值模拟方法[J]. 浙江大学学报(工学版), 2004, 38(5): 581-585. Zhang Jian, Jin Nanguo, Jin Xianyu, et al. Numerical simulation method for polygonal aggregate distribution in concrete [J]. Journal of Zhejiang University (Engineering Science), 2004, 38(5): 581-585. (in Chinese)
    [8] 杜修力, 金浏. 基于随机多尺度力学模型的混凝土力学特性研究[J]. 工程力学, 2011, 28(增刊1): 151-155. Du Xiuli, Jin Liu. Mechanical property research on concrete based on random multi-scale mechanical model[J]. Engineering Mechanics, 2011, 28(Suppl 1): 151-155. (in Chinese)
    [9] Bruggi M, Casciati S, Faravelli L. Cohesive crack propagation in a random elastic medium [J]. Probabilistic Engineering Mechanics, 2008, 23(1): 23-35.
    [10] Yang Z J, Su X T, Chen J F, et al. Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials [J]. International Journal of Solids and Structures, 2009, 46(17): 3222-3234.
    [11] Liang S X, Ren X D, Li J. A random medium model for simulation of concrete failure [J]. Science China Technological Sciences, 2013, 56(5): 1273-1281.
    [12] Neville A M. Properties of concrete [M]. The 4th and final edition ed. Longman Group UK Limited, 1995: 24-44.
    [13] Dolbow J, Belytschko T. A finite element method for crack growth without remeshing [J]. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131-150.
    [14] Belytschko T, Moës N, Usui S, et al. Arbitrary discontinuities in finite elements [J]. International Journal for Numerical Methods in Engineering, 2001, 50(4): 993-1013.
    [15] Wang D, Chen J, Sun L. Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method[J]. Finite Elements in Analysis and Design, 2003, 39(8): 765-782.
    [16] Wang K, Zhang Q, Xia X, et al. Analysis of hydraulic fracturing in concrete dam considering fluid-structure interaction using XFEM-FVM model [J]. Engineering Failure Analysis, 2015, 57: 399-412.
    [17] Lin S, Chen J, Liang S. A damage analysis for brittle materials using stochastic micro-structural information[J]. Computational Mechanics, 2016, 57(3): 371-385.
    [18] Hillerborg A, Modéer M, Petersson P. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements [J]. Cement and Concrete Research, 1976, 6(6): 773-781.
    [19] Xu X, Needleman A. Numerical simulations of fast crack growth in brittle solids [J]. Journal of the Mechanics and Physics of Solids, 1994, 42(9): 1397-1434.
    [20] Shinozuka M, Deodatis G. Simulation of multidimensional Gaussian stochastic fields by spectral representation [J]. Applied Mechanics Reviews, 1996, 49(1): 29-53.
    [21] 梁诗雪, 任晓丹, 李杰. 两相介质随机场的随机谐和函数表达[J]. 同济大学学报(自然科学版), 2016, 44(8): 1139-1144. Liang Shixue, Ren Xiaodan, Li Jie. Simulation of two-phase random field by stochastic harmonic functions[J]. Journal of Tongji University (Natural Science), 2016, 44(8): 1139-1144. (in Chinese)
    [22] 梁诗雪, 孙伟玲, 李杰. 随机场的随机谐和函数表达[J]. 同济大学学报: 自然科学版, 2012, 40(7): 965-970. Liang Shixue, Sun Weiling, Li Jie. Simulation of multi-dimensional random fields by stochastic harmonic functions [J]. Journal of Tongji University (Natural Science), 2012, 40(7): 965-970. (in Chinese)
    [23] Chen J B, Sun W L, Li J, et al. Stochastic harmonic function representation of stochastic processes [J]. Journal of Applied Mechanics, 2013, 80(1): 1-11.
    [24] Ren X D, Yang W Z, Zhou Y, et al. Behavior of high-performance concrete under uniaxial and biaxial loading [J]. ACI Materials Journal, 2008, 105(6): 548-557.
  • 期刊类型引用(10)

    1. 郭文华,冶桐杰,陈定市. 基于内聚力模型的混凝土受拉断裂数值模拟与概率本构模型. 中南大学学报(自然科学版). 2025(02): 586-597 . 百度学术
    2. 张龙飞,谢浩,冯吉利,陈燕伟. 基于真实骨料的细观混凝土建模及数值模拟. 材料导报. 2023(10): 139-146 . 百度学术
    3. 陈凌霄,程勇刚,周伟,马刚,王桥,田文祥,刘摇,高宇. 基于格构模型的长龄期混凝土力学性能研究. 武汉大学学报(工学版). 2022(03): 238-246 . 百度学术
    4. 张龙飞,谢浩,陈燕伟,李二强,冯吉利. 基于激光扫描的细观混凝土模型. 中国科学:技术科学. 2022(07): 1121-1133 . 百度学术
    5. 黄平明,潘旭鹏,牛艳伟,杜隆基,王蒂. 基于离散元的钢筋混凝土梁极限承载力研究. 工程力学. 2022(10): 215-226 . 本站查看
    6. 田波,权磊,张艳聪. 半刚性基层损伤开裂机制与微裂技术研究综述. 山西交通科技. 2022(05): 1-8 . 百度学术
    7. 肖启晟,熊学玉. 缓黏结预应力筋拉拔试验细观数值模拟. 工业建筑. 2021(10): 28-32+39 . 百度学术
    8. 杨贞军,黄宇劼,尧锋,刘国华. 基于粘结单元的三维随机细观混凝土离散断裂模拟. 工程力学. 2020(08): 158-166 . 本站查看
    9. 李磊,罗光喜,王卓涵,郑山锁. 震损钢筋混凝土柱剩余能力的数值模型. 工程力学. 2020(12): 52-67 . 本站查看
    10. 熊学玉,肖启晟. 基于内聚力模型的混凝土细观拉压统一数值模拟方法. 水利学报. 2019(04): 448-462 . 百度学术

    其他类型引用(13)

计量
  • 文章访问数:  291
  • HTML全文浏览量:  14
  • PDF下载量:  55
  • 被引次数: 23
出版历程
  • 收稿日期:  2016-09-26
  • 修回日期:  2017-04-13
  • 刊出日期:  2018-02-24

目录

    /

    返回文章
    返回