箍筋约束高强轻骨料混凝土柱轴压性能试验研究

吴涛, 魏慧, 刘喜, 刘全威

吴涛, 魏慧, 刘喜, 刘全威. 箍筋约束高强轻骨料混凝土柱轴压性能试验研究[J]. 工程力学, 2018, 35(2): 203-213. DOI: 10.6052/j.issn.1000-4750.2016.10.0814
引用本文: 吴涛, 魏慧, 刘喜, 刘全威. 箍筋约束高强轻骨料混凝土柱轴压性能试验研究[J]. 工程力学, 2018, 35(2): 203-213. DOI: 10.6052/j.issn.1000-4750.2016.10.0814
WU Tao, WEI Hui, LIU Xi, LIU Quan-wei. EXPERIMENTAL STUDY ON AXIAL COMPRESSION BEHAVIOR OF CONFINED HIGH-STRENGTH LIGHTWEIGHT AGGREGATE CONCRETE UNDER CONCENTRIC LOADING[J]. Engineering Mechanics, 2018, 35(2): 203-213. DOI: 10.6052/j.issn.1000-4750.2016.10.0814
Citation: WU Tao, WEI Hui, LIU Xi, LIU Quan-wei. EXPERIMENTAL STUDY ON AXIAL COMPRESSION BEHAVIOR OF CONFINED HIGH-STRENGTH LIGHTWEIGHT AGGREGATE CONCRETE UNDER CONCENTRIC LOADING[J]. Engineering Mechanics, 2018, 35(2): 203-213. DOI: 10.6052/j.issn.1000-4750.2016.10.0814

箍筋约束高强轻骨料混凝土柱轴压性能试验研究

基金项目: 国家自然科学基金项目(51578072,51708036);陕西省自然科学基金项目(2017JQ5092);中央高校基本业务费项目(310828173401)
详细信息
    作者简介:

    魏慧(1990―),女,新疆巴楚人,博士生,从事钢筋混凝土结构抗震研究(E-mail:weihuichd@163.com);刘喜(1986―),男,陕西延安人,副教授,博士,从事工程结构抗震性能研究(E-mail:lliuxii@163.com);刘全威(1989―),男,安徽六安人,博士生,从事工程结构抗震性能研究(E-mail:lqw8911@163.com).

    通讯作者:

    吴涛(1976―),男,安徽霍山人,教授,博士,院长,从事工程结构抗震性能研究(E-mail:wutao@chd.edu.cn).

  • 中图分类号: TU375.3

EXPERIMENTAL STUDY ON AXIAL COMPRESSION BEHAVIOR OF CONFINED HIGH-STRENGTH LIGHTWEIGHT AGGREGATE CONCRETE UNDER CONCENTRIC LOADING

  • 摘要: 完成了12根不同配箍形式和体积配箍率的箍筋约束高强轻骨料混凝土柱轴压性能试验,系统地研究了构件的破坏过程与破坏形态、应力-应变曲线及箍筋应变等;重点分析了不同配箍率和配箍形式对构件承载力和延性的影响;建立了适用于该类轴压柱峰值应力(f'cc)和相应峰值应变(εcc)的计算模型,并引入Richart、Mander、Razvi和Saatcioglu、Khaloo和El-Dash等经典模型对比分析建议模型的准确性。研究表明:峰值荷载过后,约束柱保护层整体被切掉后剥落,内部骨料和骨料与砂浆界面均出现少许裂缝,与普通混凝土构件存在显著差异,但应力-应变曲线发展规律与普通混凝土类似;最终破坏以箍筋屈服、相邻箍筋间核心区混凝土压碎破坏为标志,表面形成“H”形或45°斜向破坏面;同时,增大体积配箍率和改善箍筋形式分别能够提高核心区混凝土的侧向约束力和增大约束面积,“井”字形复合配箍可满足承载力和延性需求;结合配箍特征值(λt)和配箍形式影响参数(k)建立模型的计算结果与试验值吻合良好,能够准确、合理地预测该类构件的峰值应力和相应峰值应变。
    Abstract: In order to investigate the axial compression behavior of confined high-strength lightweight aggregate concrete (HSLAC), an experimental study of twelve HSLAC columns confined by reinforcement under concentric loading were carried out. The failure process, failure mode, stress-strain behavior and strain of lateral ties were studied in the research program. Expected general improvements in strength and ductility of specimens with respect to the effect of key variables such as the tie configuration and transverse reinforcement ratio were reported. And a calculation model of peak stress (f'cc) and the corresponding strain (εcc) suitable for confined HSLAC columns were proposed and compared with Richart model, Mander model, Razvi and Saatcioglu model, and Khaloo and El-Dash model to evaluate the accuracy. It is shown that, after the peak load point, the concrete cover were cut off and sudden spalling occurred as a whole, and a few cracks were found on the internal aggregates as well as the interface between aggregate and mortar, which present significant differences from normal concrete members. However, the development law of stress-strain curves is similar to the normal concrete. The plane of failure presents “H” shape or a diagonal failure at an angle of 45° with the horizontal surface. The results further indicate that the lateral restraint force and confined area of core concrete can be significantly increased by the reasonable selection of tie configuration and adding the amount of lateral ties. It is possible to obtain sufficient strength and ductility behavior in HSLAC columns through proper overlapping hoops with cross ties. The empirical model proposed by combining the stirrup characteristic values (λt) and coefficient (k), can accurately and reasonably estimate the peak stress and corresponding strain of confined HSLAC columns.
  • [1] 叶列平, 孙海林, 陆新征, 等. 高强轻骨料混凝土结构—性能、分析与计算[M]. 北京: 科学出版社, 2009: 1-4. Ye Lieping, Sun Hailin, Lu Xinzheng, et al. Highstrength lightweight reinforced concrete structureperformance 、analysis and calculation [M]. Beijing: Science Press, 2009: 1-4. (in Chinese)
    [2] 邵永健. 型钢轻骨料混凝土梁的力学性能及设计方法的试验研究[D]. 陕西: 西安建筑科技大学, 2007. Shao Yongjian. Experimental study on mechanical performance and design method of reinforced lightweight aggregate concrete beams [D]. Shaanxi: Xi'an University of Architecture & Technology, 2007. (in Chinese)
    [3] 孙海林, 丁建彤, 叶列平. 高强轻骨料混凝土在桥梁工程中的应用及发展[C]. 第十五届全国桥梁学术会议论文集上海: 同济大学出版社, 2002: 787-793. Sun Hailin, Ding Jiantong, Ye Lieping. The development and application of high-strength lightweight aggregate concrete in bridge engineering [C]. The fifteenth national conference on bridge, Shanghai: Tongji University Press, 2002: 787-793. (in Chinese)
    [4] Richart F E, Brandtzaeg A, Brown R L. The failure of plain and spirally reinforced concrete in compression[R]. Bulletin No. 190, Engineering Experiment Station, University of Illinois, Urbana, 1929.
    [5] Sheikh S A, Uzumeri S M. Strength and ductility of tied concrete columns [J]. Journal of the Structural Division, ASCE, 1980, 106(5): 1079-1102.
    [6] Mander J B, Priestley M J N, Park R. Theoretical stress-strain model for confined concrete [J]. Journal of Structural Engineering, ASCE, 1988, 114(8): 1804-1826.
    [7] Cusson D, Paultre P. Stress-strain model for confined high-strength concrete [J]. Journal of Structural Engineering, ASCE, 1995, 121(3): 468-477.
    [8] 史庆轩, 杨坤, 刘维亚, 等. 高强箍筋约束高强混凝土轴心受压力学性能试验研究[J]. 工程力学, 2012, 29(1): 141-149. Shi Qingxuan, Yang Kun, Liu Weiya, et al. Experimental study on mechanical behavior of high-strength concrete confined by high-strength stirrups under concentric loading [J]. Engineering Mechanics, 2012, 29(1): 141-149. (in Chinese)
    [9] 史庆轩, 王南, 田园, 等. 高强箍筋约束高强混凝土轴心受压应力-应变全曲线研究[J]. 建筑结构学报, 2013, 34(4) 144-151. Shi Qingxuan, Wang Nan, Tian Yuan, et al. Study on stress-strain relationship of high-strength concrete confined with high-strength stirrups under axial compression [J]. Journal of Building Structures, 2013, 34(4): 144-151. (in Chinese)
    [10] 赵作周, 张石昂, 贺小岗, 等. 箍筋约束高强混凝土受压应力-应变本构关系[J]. 建筑结构学报, 2014, 35(5): 96-103. Zhao Zuozhou, Zhang Shiang, He Xiaogang, et al. Stress-strain relationship of stirrup-confined high strength concrete [J]. Journal of Building Structures, 2014, 35(5): 96-103. (in Chinese)
    [11] 宋佳, 李振宝, 王元清, 等. 考虑尺寸效应影响的箍筋约束混凝土应力-应变本构关系模型[J]. 建筑结构学报, 2015, 36(8): 99-107. Song Jia, Li Zhenbao, Wang Yuanqing, et al. Stress-strain constitutive model of concrete confined by hoops with considering size effect [J]. Journal of Building Structures, 2015, 36(8): 99-107. (in Chinese)
    [12] Martinez S, Nilson A H, Slate F O. Spirally reinforced high-strength concrete columns [C]// ACI Journal Proceedings, 1984, 81(5): 431-442.
    [13] Hlaing M M, Huan W T, Thangayah T. Response of spiral-reinforced lightweight concrete to short-term compression [J]. Journal of Materials in Civil Engineering, 2010, 22(12): 1295-1303.
    [14] Khaloo A R, Bozorgzadeh A. Influence of confining hoop flexural stiffness on behavior of high-strength lightweight concrete columns [J]. ACI Structural Journal, 2001, 98(5): 657-664.
    [15] Bjerkeli L, Tomaszewicz A, Jensen J J. Deformation properties and ductility of high-strength concrete [J]. ACI Materials Journal, 1990, 121(1): 215-238.
    [16] GB/T 228.1-2010, 金属材料拉伸试验第1 部分: 室温试验方法[S]. 北京:中国标准出版社, 2011. GB/T 228.1-2010, Metallic materials-Tensile testingmethod of test at ambient temperature [S]. Beijing: China Standard Press, 2011.
    [17] Basset R, Uzumeri S M. Effect of confinement on the behavior of high-strength lightweight concrete columns[J]. Canadian Journal of Civil Engineering, 1986, 13(6): 741-751.
    [18] Richart F E, Brandtzaeg A, Brown R L. A study of the failure of concrete under combined compressive stresses[M]. University of Illinois Bulletin, 1928: 24-36.
    [19] Mander J B, Priestley M J N, Park R. Theoretical stress-strain model for confined concrete [J]. Journal of Structural Engineering, ASCE, 1988, 114(8): 1804-1826.
    [20] Razvi S, Saatcioglu M. Confinement model for high-strength concrete [J]. Journal of Structural Engineering, ASCE, 1999, 125(3): 281-289.
    [21] Khaloo A R, El-Dash K M, Ahmad S H. Model for lightweight concrete columns confined by either single hoops or interlocking double spirals [J]. ACI Structural Journal, 1999, 96(6): 883-890.
  • 期刊类型引用(9)

    1. 刘旭宏,祁皑,罗才松,黄凯. 基于双重壳模型的钢筋黏结滑移有限元模拟. 工程抗震与加固改造. 2022(03): 23-29 . 百度学术
    2. 赵发军,李建. 基于ABAQUS的复合箍筋约束轻骨料混凝土柱偏压力学性能研究. 中国测试. 2022(09): 171-176+184 . 百度学术
    3. 陈宇良,朱玲,吉云鹏,吴辉琴,叶培欢. 三轴受压粉煤灰陶粒轻骨料混凝土力学性能试验. 复合材料学报. 2022(10): 4801-4812 . 百度学术
    4. 万宇通,郑文忠,王英. 网格箍筋约束混凝土柱轴压受力性能试验研究. 工程力学. 2022(11): 166-176 . 本站查看
    5. 牛建刚,许文明,梁剑. 受压区局部约束塑钢纤维轻骨料混凝土梁的抗弯性能. 材料导报. 2021(08): 8056-8063 . 百度学术
    6. 李磊,王卓涵,张艺欣,郑山锁. 混凝土结构中考虑滑移效应的钢筋本构模型研究. 工程力学. 2020(03): 88-97 . 本站查看
    7. 邓宗才,姚军锁. 高强钢筋约束超高性能混凝土柱轴心受压本构模型研究. 工程力学. 2020(05): 120-128 . 本站查看
    8. 赵恩亮. 不同侧向应力作用下轻骨料混凝土力学性能研究. 新型建筑材料. 2020(05): 17-21 . 百度学术
    9. 周天华,余吉鹏,李亚鹏,张钰. 单轴对称十字型钢混凝土短柱轴压性能试验研究. 工程力学. 2020(12): 157-170 . 本站查看

    其他类型引用(14)

计量
  • 文章访问数:  258
  • HTML全文浏览量:  31
  • PDF下载量:  46
  • 被引次数: 23
出版历程
  • 收稿日期:  2016-10-18
  • 修回日期:  2017-02-20
  • 刊出日期:  2018-02-24

目录

    /

    返回文章
    返回