客货共线无砟轨道轮轨力统计特征研究

任娟娟, 徐家铎, 田根源., 赵华卫, 蒲建锦

任娟娟, 徐家铎, 田根源., 赵华卫, 蒲建锦. 客货共线无砟轨道轮轨力统计特征研究[J]. 工程力学, 2018, 35(2): 239-248. DOI: 10.6052/j.issn.1000-4750.2016.10.0826
引用本文: 任娟娟, 徐家铎, 田根源., 赵华卫, 蒲建锦. 客货共线无砟轨道轮轨力统计特征研究[J]. 工程力学, 2018, 35(2): 239-248. DOI: 10.6052/j.issn.1000-4750.2016.10.0826
REN Juan-juan, XU Jia-duo, TIAN Gen-yuan, ZHAO Hua-wei, PU Jian-jin. FIELD TEST AND STATISTICAL CHARACTERISTICS OF WHEEL-RAIL FORCE FOR SLAB TRACK WITH PASSENGER AND FREIGHT TRAFFIC[J]. Engineering Mechanics, 2018, 35(2): 239-248. DOI: 10.6052/j.issn.1000-4750.2016.10.0826
Citation: REN Juan-juan, XU Jia-duo, TIAN Gen-yuan, ZHAO Hua-wei, PU Jian-jin. FIELD TEST AND STATISTICAL CHARACTERISTICS OF WHEEL-RAIL FORCE FOR SLAB TRACK WITH PASSENGER AND FREIGHT TRAFFIC[J]. Engineering Mechanics, 2018, 35(2): 239-248. DOI: 10.6052/j.issn.1000-4750.2016.10.0826

客货共线无砟轨道轮轨力统计特征研究

基金项目: 中国铁路总公司科技研究开发计划项目(2015G001-F);国家自然科学基金项目(51578472,U1434208)
详细信息
    作者简介:

    徐家铎(1991―),男,山东济南人,硕士生,主要从事高速重载轨道结构与轨道动力学研究(E-mail:jiaduo1991@126.com);田根源(1993―),男,四川资阳人,硕士生,主要从事高速重载轨道结构与轨道动力学研究(E-mail:2511040059@qq.com);赵华卫(1992―),男,河北邢台人,助理工程师,硕士生,主要从事高速重载轨道结构与轨道动力学研究(E-mail:zhwe1992@foxmail.com);蒲建锦(1987―),男,四川广元人,助理工程师,硕士生,主要从事高速重载轨道结构与轨道动力学研究(E-mail:tjp_jjp@163.com).

    通讯作者:

    任娟娟(1983―),女,山西霍州人,教授,博士,主要从事高速重载轨道结构与轨道动力学研究(E-mail:jj.ren@swjtu.edu.cn).

  • 中图分类号: U213.2+12

FIELD TEST AND STATISTICAL CHARACTERISTICS OF WHEEL-RAIL FORCE FOR SLAB TRACK WITH PASSENGER AND FREIGHT TRAFFIC

  • 摘要: 客货共线无砟轨道,相较于客运专线,货车轴重的增加势必造成列车荷载的增大,而轨道结构直接承受列车荷载的作用,因而有必要对客货共线无砟轨道轮轨力荷载的统计特征做进一步研究。该文以客货共线CRTS I型板式无砟轨道为研究对象,选取遂渝线蔡家车站和渝怀线鱼嘴2号隧道两个测点,应用IMC动态数据采集系统测取过往客、货车垂向轮轨力。运用轮轨系统耦合动力学理论建立车辆-轨道垂向耦合动力学模型,计算不同车速和不同轨道不平顺激励下客、货车轮轨力,结合实测数据,分析客货共线无砟轨道轮轨力的统计特征,得出以下结论:客货共线无砟轨道轮轨力呈近似正态分布,95%以上客车轮轨力分布于45 kN~90 kN,95%以上货车轮轨力分布于100 kN~150 kN,与实测所得数据基本吻合;客货车轮轨力概率密度曲线随车速和不平顺幅值的增大而逐渐变得“矮胖”,轮轨力分布范围随车速增大和线路状况劣化而逐渐增大,且线路状况对轮轨力分布的影响远大于车速;以1.5倍静轮重和轮轨力最大峰值为控制指标,建议客货共线无砟轨道客车车速控制在180 km/h以下,货车车速控制在100 km/h以下。
    Abstract: The increase of axle load of a freight vehicle for railways with passenger and freight traffic will certainly lead to an obvious increase of train load. Since the track structure sustains the dynamic load of moving train directly, it is necessary to do further research for statistical characteristics of wheel-rail forces of railways with passenger and freight traffic. In order to measure the vertical wheel-rail forces of the passenger vehicle and freight vehicle on CRTS I slab, two field tests at Caijia station of Suining-Chongqing railway and at Yuzui No.2 tunnel of Chongqing-Huaihua railway were carried out by applying the IMC dynamic data acquisition system. Meanwhile, a vertical vehicle-track coupling dynamic model was established to calculate the wheel-rail forces of a passenger vehicle and a freight vehicle with respect to the different velocities and the irregularity excitations. The statistical characteristics of wheel-rail forces for slab track with passenger and freight traffic were investigated by comparing the computational results with the experimental data. The results show that: a) wheel-rail forces for slab track with passenger and freight traffic were similar to normal distribution, and more than 95% of the values concerning the wheel-rail force caused by passenger vehicles and freight vehicles range in the domain of 45 kN~90 kN and 100 kN~150 kN respectively, which correlates well with the actual experimental observations; b) the probability density curve of the wheel-rail forces caused by passenger vehicle and freight vehicle become fatter and shorter with the increase of velocity and amplitude of irregularity, and thusly, the distribution range of the wheel-rail force will be broaden due to the increase of velocity and the degradation of railway condition, and the latter factor affects the distribution of the wheel-rail forces more seriously than the former's; c) if the 1.5 times of the static wheel load and the maximum value of the wheel-rail force are set as the control indexes, it is suggested that the velocity of passenger vehicle for slab track with passenger and freight traffic should be controlled under 180 km/h, whereas the freight vehicle should be no more than 100 km/h.
  • [1] 王午生. 铁路碎石道床的稳定性问题[J]. 中国铁道科学, 1982, 1(3): 138-147. Wang Wusheng. On the stability of the crushed stone ballast [J]. China Railway Science, 1982, 1(3): 138-147. (in Chinese)
    [2] 井国庆, 王子杰, 施晓毅. 多围压下三轴压缩试验与不可破裂颗粒离散元法分析[J]. 工程力学, 2015, 32(10): 82-88. Jing Guoqing, Wang Zijie, Shi Xiaoyi. Ballast triaxial tests and non-breakable particle discrete element method analysis under different confining pressures [J]. Engineering Mechanics, 2015, 32(10): 82-88. (in Chinese)
    [3] 何华武. 我国客运专线应大力发展无砟轨道[J]. 中国铁路, 2005, 1: 11-15. HE Huawu. Ballastless track shall be developed in great efforts on chinese passenger dedicated lines [J]. Chinese Railways, 2005, 1: 11-15. (in Chinese)
    [4] 金学松, 郭俊, 肖新标. 高速列车安全运行研究的关键科学问题[J]. 工程力学, 2009, 26(增刊Ⅱ): 8-22. Jin Xuesong, Guo Jun, Xiao Xinbiao. Key scientific problems in the study on running safety of high speed trains [J]. Engineering Mechanics, 2009, 26(Suppl Ⅱ): 8-22. (in Chinese)
    [5] 蔡成标, 翟婉明, 王开云. 遂渝线路基上板式轨道动力性能计算及评估分析[J]. 中国铁道科学, 2006, 27(4): 17-21. Cai Chengbiao, Zhai Wanming, Wang Kaiyun. Calculation and assessment analysis of the dynamic performance for slab track on Sui-Yu railway [J]. China Railway Science, 2006, 27(4): 17-21. (in Chinese)
    [6] 雷晓燕, 邓福清. 客货混运铁路专线轨道振动分析[J]. 铁道工程学报, 2007, 5(3): 18-22. Lei Xiaoyan, Deng Fuqing. Vibration analysis of track for railways with passenger and freight traffic [J]. Journal of Railway Engineering Society, 2007, 5(3): 18-22. (in Chinese)
    [7] Lei X, Rose J G. Track vibration analysis for railways with mixed passenger and freight traffic [J]. Proceedings of the Institution of Mechanical Engineers, 2008, 222(4): 413-421.
    [8] Sharp Calum, Woodcock James. Analysis of railway vibration signals using supervised machine learning for the development of exposure-response relationships [C]. Proceedings of Meetings on Acoustics, Montreal: Acoustical Society of America, 2013, 19: 1-9.
    [9] 翟婉明. 高速铁路轮轨冲击振动的特征及其控制原理[J]. 铁道学报, 1995, 17(3): 28-33. Zhai Wanming. Characteristics of wheel-rail impact vibrations in high-speed railway operation and their control principles [J]. Journal of the China Railway Society, 1995, 17(3): 28-33. (in Chinese)
    [10] 文中章. C70铁路货车疲劳载荷谱研究[D]. 成都: 西南交通大学, 2008: 23-30. Wen Zhongzhang. Fatigue load spectra study of C70 type railway freight car [D]. Chengdu: Southwest Jiaotong University, 2008: 23-30. (in Chinese)
    [11] Steenbergen, de Jong E, Zoeteman A. Dynamic axle loads as a main source of railway track degradation [C]. Geotechnical Safety and Risk V, Rotterdam: IOS Press, 2015, 10: 243-249.
    [12] Chen Chao, Sun Quanxin, Han Mei. Study on reasonable sampling frequency for freight vehicle dynamics simulation based on SIMPACK [J]. Journal of Beijing Institute of Technology (English Edition), 2011, 20(1): 255-259.
    [13] 曾树谷. 铁路轨道动力测试技术[M]. 北京: 中国铁道出版社, 1988: 50-55. Zeng Shugu. Dynaimc testing techniques for railway track [M]. Beijing: China Railway Press, 1988: 50-55. (in Chinese)
    [14] 翟婉明. 车辆-轨道垂向系统的统一模型及其耦合动力学原理[J]. 铁道学报, 1992, 14(3): 12-23. Zhai Wanming. The vertical model of vehicle-track system and its coupling dynamics [J]. Journal of the China Railway Society, 1992, 14(3): 12-23. (in Chinese)
    [15] TB/T 3352-2014, 高速铁路无砟轨道不平顺谱[S]. 北京: 中国铁道出版社, 2015. TB/T 3352-2014, PSD of ballastless track irregularities of high-speed railway [S]. Beijing: China Railway Press, 2015. (in Chinese)
    [16] 翟婉明. 车辆-轨道耦合动力学[M]. 北京: 科学出版社, 2015: 120-125. Zhai Wanming. Vehicle-track coupled dynamics [M]. Beijing: Science Press, 2015: 120-125. (in Chinese)
    [17] Zhu Shengyang, Cai Chengbiao. Stress intensity factors evaluation for through-transverse crack in slab track system under vehicle dynamic load [J]. Engineering Failure Analysis, 2014, 46: 219-237.
    [18] 蔡成标, 徐鹏. 高速铁路无砟轨道关键设计参数动力学研究[J]. 西南交通大学学报, 2010, 45(4): 493-497. Cai Chengbiao, Xu Peng. Dynamic analysis of key design parameters for ballastless track of high-speed railway [J]. Journal of Southwest Jiaotong University, 2010, 45(4): 493-497. (in Chinese)
    [19] 刘学毅, 赵坪锐, 杨荣山. 客运专线无砟轨道设计理论和方法[M]. 成都: 西南交通大学出版社, 2010: 88-93. Liu Xueyi, Zhao Pingrui, Yang Rongshan. The design theory and method for ballastless track on passenger dedicated line [M]. Chengdu: Southwest Jiaotong University Press, 2010: 88-93. (in Chinese)
  • 期刊类型引用(18)

    1. 汤雪扬,蔡小培,孙加林,杨飞,刘万里. 高速铁路道岔区轮轨力时频及统计分布特征研究. 铁道学报. 2025(03): 109-117 . 百度学术
    2. 马超智,赵闻强,周鹏,高亮. 时速400 km级无砟轨道轮轨耦合共振及影响因素研究. 铁道科学与工程学报. 2025(04): 1407-1419 . 百度学术
    3. 李佳静. 客货共线连续梁梁端轨枕支承间距取值研究. 铁道建筑技术. 2023(05): 80-84 . 百度学术
    4. 任娟娟,章恺尧,许雪山,肖源杰,叶文龙,邓世杰,田晋丞. 基于高周疲劳损伤本构模型的无砟轨道自密实混凝土的性能演化规律(英文). Journal of Central South University. 2023(06): 2048-2063 . 百度学术
    5. 许钊荣,李莹,董昆灵,高自远,杨荣山,郑淮林. 桥上长枕埋入式无砟轨道疲劳试验. 铁道科学与工程学报. 2022(04): 917-924 . 百度学术
    6. 谭琪,BEKHZAD Yusupov,邱延峻. 不同荷载作用下高铁基床表层沥青混凝土减振性能分析. 铁道标准设计. 2022(08): 44-49 . 百度学术
    7. 邹锦华,饶瑞,高天驰,王荣辉. 地铁列车作用下不同无砟轨道结构振动响应. 应用基础与工程科学学报. 2022(06): 1455-1467 . 百度学术
    8. 任娟娟,刘伟,庞玲,江万红,陈应东,刘明明. 大调整量新型高承轨台无砟轨道受力特性. 铁道工程学报. 2021(05): 31-35+46 . 百度学术
    9. 刘超. 既有预埋铁座扣件大调高能力优化研究. 铁道建筑. 2021(08): 126-129 . 百度学术
    10. 韩旭,向活跃,李永乐. 考虑参数不确定性的列车-桥梁垂向耦合振动的PC-ARMAX代理模型研究. 工程力学. 2021(11): 180-188 . 本站查看
    11. 郭强,王平,徐井芒,胡辰阳. 4种地铁减振轨道轮轨动态相互作用对比分析. 铁道建筑. 2020(03): 123-126+140 . 百度学术
    12. 刘卫星,赵坪锐,毕澜潇,丁晨旭. 高速铁路有砟轨道轮轨附加动荷载取值研究. 铁道标准设计. 2020(05): 50-56 . 百度学术
    13. 毕澜潇,赵林,赵坪锐,宁秋娴,刘学毅. 无砟轨道轮轨垂向冲击荷载实用计算式. 中国铁道科学. 2020(06): 20-29 . 百度学术
    14. 任娟娟,田根源,徐家铎,邓世杰,解鹏. 客货共线单元板式无砟轨道荷载作用特性与疲劳寿命预测. 铁道学报. 2019(03): 110-116 . 百度学术
    15. 任娟娟,李浩蓝,杜威,邓世杰,田根源,巫江. 板式无砟轨道CA砂浆黏弹性特征. 中南大学学报(自然科学版). 2019(03): 743-751 . 百度学术
    16. 任娟娟,闫亚飞,胡华锋,邓世杰,凤翔. 客货共线无砟轨道钢轨支点压力时程特性分析方法. 交通运输工程学报. 2019(02): 82-91 . 百度学术
    17. 杨荣山,汪杰,姜恒昌,陈帅,杜金鑫. CRTSⅡ型板式轨道底座板后浇带脱空对轨道结构与行车的影响. 交通运输工程学报. 2019(03): 71-78 . 百度学术
    18. 康维新,陈帅,魏春城,刘学毅,李佳莉,刘笑凯. 无砟轨道温度场计算及持续高温天气影响分析. 铁道学报. 2019(07): 127-134 . 百度学术

    其他类型引用(15)

计量
  • 文章访问数:  361
  • HTML全文浏览量:  62
  • PDF下载量:  49
  • 被引次数: 33
出版历程
  • 收稿日期:  2016-10-25
  • 修回日期:  2017-03-13
  • 刊出日期:  2018-02-24

目录

    /

    返回文章
    返回