正交各向异性空心圆柱体中的纵向导波

宋国荣, 刘明坤, 吕炎, 刘宏业, 吴斌, 何存富

宋国荣, 刘明坤, 吕炎, 刘宏业, 吴斌, 何存富. 正交各向异性空心圆柱体中的纵向导波[J]. 工程力学, 2018, 35(3): 218-226. DOI: 10.6052/j.issn.1000-4750.2016.11.0841
引用本文: 宋国荣, 刘明坤, 吕炎, 刘宏业, 吴斌, 何存富. 正交各向异性空心圆柱体中的纵向导波[J]. 工程力学, 2018, 35(3): 218-226. DOI: 10.6052/j.issn.1000-4750.2016.11.0841
SONG Guo-rong, LIU Ming-kun, LÜ Yan, LIU Hong-ye, WU Bin, HE Cun-fu. LONGITUDINAL GUIDED WAVES IN ORTHOTROPIC HOLLOW CYLINDERS[J]. Engineering Mechanics, 2018, 35(3): 218-226. DOI: 10.6052/j.issn.1000-4750.2016.11.0841
Citation: SONG Guo-rong, LIU Ming-kun, LÜ Yan, LIU Hong-ye, WU Bin, HE Cun-fu. LONGITUDINAL GUIDED WAVES IN ORTHOTROPIC HOLLOW CYLINDERS[J]. Engineering Mechanics, 2018, 35(3): 218-226. DOI: 10.6052/j.issn.1000-4750.2016.11.0841

正交各向异性空心圆柱体中的纵向导波

基金项目: 国家自然科学基金项目(51235001,51575015,51505013)
详细信息
    作者简介:

    刘明坤(1994-),男,河南人,硕士生,从事现代测控技术及方法研究(E-mail:liu_mingkun@126.com);吕炎(1985-),男,河南人,讲师,博士,从事声学显微镜技术、材料力学性能无损检测等方面研究(E-mail:lvyan@bjut.edu.cn);刘宏业(1986-),男,山东人,讲师,博士,从事超声无损检测新技术、结构健康监测等方面研究(E-mail:liuhongye910@126.com);吴斌(1962-),男,山西人,教授,博士,副校长,从事结构动力行为及应用和测控技术方面研究(E-mail:wb@bjut.edu.cn);何存富(1958-),男,山西人,教授,博士,院长,从事无损检测新技术和现代测控技术及方法等方面研究(E-mail:hecunfu@bjut.edu.cn).

    通讯作者:

    宋国荣(1963-),女,北京人,教授,博士,从事现代测控技术及方法和超声无损检测新技术等方面研究(E-mail:grsong@bjut.edu.cn).

  • 中图分类号: O343.2

LONGITUDINAL GUIDED WAVES IN ORTHOTROPIC HOLLOW CYLINDERS

  • 摘要: 基于三维线弹性理论,采用勒让德正交多项式展开法,推导了正交各向异性材料中纵向导波的耦合波动方程,并对耦合波动方程进行了数值求解。首先,为确定方法的适用性和准确性,利用Disperse软件求解各向同性空心圆柱体中纵向导波的频散曲线,并将其与勒让德正交多项式展开法求解结果相对比,二者结果完全一致。然后,讨论了勒让德正交多项式截止值对轴对称导波频散曲线收敛性的影响,并从数值计算的角度分析了产生影响的原因。最后,针对碳纤维缠绕的复合材料空心圆柱体,分别求解纵向、扭转和弯曲三种不同模态纵向导波的相速度频散曲线。计算了不同径厚比下的弯曲模态相速度频散曲线,分析径厚比的变化对频散曲线的影响。
    Abstract: Based on linear three-dimensional elasticity, the wave motion equations for coupled longitudinal guided waves are derived by using a Legendre orthogonal polynomial approach, and the coupled equations of wave motion are solved numerically. Firstly, to determine the applicability and accuracy of this method, the dispersion curves of longitudinal guided waves in isotropic hollow cylinders were solved by using Disperse software. The results obtained by Disperse calculation are compared with those by Legendre orthogonal polynomial approach method. The calculation results of the two methods are consistent. Then, the influence of the Legendre polynomial cutoff value on the convergence of the axisymmetric guided wave dispersion curves is discussed. The reason of the influence is analyzed by the numerical calculation. Finally, for the composite hollow cylinder wound by carbon fiber, the dispersion curves of three different modes of longitudinal guided waves are calculated separately. The phase velocity dispersion curves for different ratios of outer radius to thickness are calculated to analyze the influence of the ratio on the dispersion curves.
  • [1] Kunte M V, Sarkar A, Sonti V R. Generalized asymptotic expansions for the wavenumbers in infinite flexible in vacuo, orthotropic cylindrical shells[J]. Journal of Sound & Vibration, 2011, 330(23):5628-5643.
    [2] 陈颖璞, 赵明, 马书义, 等. 管道损伤处纵向导波模态转换对损伤识别的影响[J]. 工程力学, 2016, 33(6):215-221.Chen Yingpu, Zhao Ming, Ma Shuyi, et al. The effect of longitudinal modes waveguide conversion on the feature identification of defects in pipes[J]. Engineering Mechanics, 2016, 33(6):215-221. (in Chinese)
    [3] 于保华, 杨世锡, 甘春标. 一种多层圆管纵向导波频散特性分析方法研究[J]. 工程力学, 2013, 30(4):373-379. Yu Baohua, Yang Shixi, Gan Chunbiao. Research on frequency dispersion characteristics of longitudinal guided wave in multi-layer tube[J]. Engineering Mechanics, 2013, 30(4):373-379. (in Chinese)
    [4] Lowe P S, Sanderson R, Boulgouris N V, et al. Inspection of cylindrical structures using the first longitudinal guided wave mode in isolation for higher flaw sensitivity[J]. IEEE Sensors Journal, 2015, 16(3):706-714.
    [5] Stefan S, Constantin N, Gavan M, et al. Extraction of dispersion curves for waves propagating in free complex waveguides by standard finite element codes[J]. Ultrasonics, 2011, 51(4):503-515.
    [6] Predoi M V. Guided waves dispersion equations for orthotropic multilayered pipes solved using standard finite elements code[J]. Ultrasonics, 2014, 54(7):1825-1831.
    [7] Gravenkamp H, Birk C, Song C. The computation of dispersion relations for axisymmetric waveguides using the scaled boundary finite element method[J]. Ultrasonics, 2014, 54(5):1373-1385.
    [8] Gazis D C. Three-dimensional investigation of the propagation of waves in hollow circular cylinders. I. analytical foundation[J]. Journal of the Acoustical Society of America, 1959, 31(5):568-573.
    [9] Gazis D C. Three-dimensional investigation of the propagation of waves in hollow circular cylinders. Ⅱ. numerical results[J]. Journal of the Acoustical Society of America, 1959, 31(5):573-578.
    [10] Markuš Š, Mead D J. Axisymmetric and asymmetric wave motion in orthotropic cylinders[J]. Journal of sound and vibration, 1995, 181(1):127-147.
    [11] Lowe M J S. Matrix techniques for modeling ultrasonic waves in multilayered media[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 1995, 42(4):525-542.
    [12] Lefebvre J E, Zhang V, Gazalet J, et al. Legendre polynomial approach for modeling free-ultrasonic waves in multilayered plates[J]. Journal of Applied Physics, 1999, 85(7):3419-3427.
    [13] Elmaimouni L, Lefebvre J E, Zhang V, et al. Guided waves in radially graded cylinders:a polynomial approach[J]. NDT & E International, 2005, 38(5):344-353.
    [14] Yu J G, Zhang B, Lefebvre J E, et al. Wave propagation in functionally graded piezoelectric rods with rectangular cross-section[J]. Archives of Mechanics, 2015, 67(3):213-231.
    [15] Dahmen S, Amor M B, Ghozlen M H B. Investigation of the coupled Lamb wave propagation in viscoelastic and anisotropic multilayer composites by Legendre polynomial method[J]. Composite Structures, 2016, 153:557-568.
    [16] 吴斌, 禹建功, 何存富. 正交各向异性空心圆柱体中的周向超声导波[J]. 工程力学, 2007, 24(8):37-42. Wu Bin, Yu Jiangong, He Cunfu. Guided circumferential waves in orthotropic hollow cylinders[J]. Engineering Mechanics, 2007, 24(8):37-42. (in Chinese)
    [17] 何存富, 刘宏业, 刘增华, 等. 正交各向异性板中非主轴方向的Lamb波[J]. 固体力学学报, 2013, 34(1):55-62. He Cunfu, Liu Hongye, Liu Zenghua, et al. Lamb waves propagation along non-principal directions in orthotropic plate[J]. Chinese Journal of Solid Mechanics, 2013, 34(1):55-62. (in Chinese)
    [18] Yu J G, Lefebvre J E, Elmaimouni L. Guided waves in multilayered plates:An improved orthogonal polynomial approach[J]. Acta Mechanica Solida Sinica, 2014, 27(5):542-550.
    [19] 张小明, 薛铜龙. 具有初应力的多层空心圆柱体中的导波[J]. 工程力学, 2014, 31(8):223-229. Zhang Xiaoming, Xue Tonglong. Guided waves in initially stressed multilayered hollow cylinders[J]. Engineering Mechanics, 2014, 31(8):223-229. (in Chinese)
    [20] 孟维迎, 孙鹏文, 张兰挺, 等. 基于能量法的复合材料层合板性能等效算法研究与应用[J]. 太阳能学报, 2014, 35(8):1505-1510. Meng Weiying, Sun Pengwen, Zhang Lanting, et al. Research and application of property equivalence algorithm for composite lamination plate based on energy method[J]. Acta Energiae Solaris Sinica, 2014, 35(8):1505-1510. (in Chinese)
    [21] Shi Y, Jain N, Jemmali R, et al. Prediction of elastic properties for a wound oxide ceramic matrix composite material[J]. International Journal of Applied Ceramic Technology, 2015, 12(Suppl 3):E99-E110.
    [22] Gsell D, Dual J. Non-destructive evaluation of elastic material properties in anisotropic circular cylindrical structures[J]. Ultrasonics, 2004, 43(43):123-132.
  • 期刊类型引用(3)

    1. 张小明,陈滔,周红梅,禹建功. 压电半导体板超声导波特性研究. 河南理工大学学报(自然科学版). 2023(01): 95-101 . 百度学术
    2. 王鑫鑫,禹建功,张博,刘灿灿,王现辉. 一维六方准晶纳米板中Lamb波特性研究. 工程力学. 2023(10): 213-221 . 本站查看
    3. 李思宇,张宇,刘宏业,范彦平,吕炎,刘增华. 黏弹性正交各向异性空心圆柱中纵向导波的传播. 复合材料学报. 2019(10): 2275-2285 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  345
  • HTML全文浏览量:  54
  • PDF下载量:  59
  • 被引次数: 7
出版历程
  • 收稿日期:  2016-10-31
  • 修回日期:  2017-05-05
  • 刊出日期:  2018-03-24

目录

    /

    返回文章
    返回