不确定结构输出反馈H保性能鲁棒分散控制研究

潘兆东, 谭平, 周福霖

潘兆东, 谭平, 周福霖. 不确定结构输出反馈H保性能鲁棒分散控制研究[J]. 工程力学, 2018, 35(4): 160-167. DOI: 10.6052/j.issn.1000-4750.2017.01.0032
引用本文: 潘兆东, 谭平, 周福霖. 不确定结构输出反馈H保性能鲁棒分散控制研究[J]. 工程力学, 2018, 35(4): 160-167. DOI: 10.6052/j.issn.1000-4750.2017.01.0032
PAN Zhao-dong, TAN Ping, ZHOU Fu-lin. OUTPUT FEEDBACK H GUARANTEED COST ROBUST DECENTRALIZED CONTROL FOR BUILDING STRUCTURE WITH UNCERTAIN PARAMETERS[J]. Engineering Mechanics, 2018, 35(4): 160-167. DOI: 10.6052/j.issn.1000-4750.2017.01.0032
Citation: PAN Zhao-dong, TAN Ping, ZHOU Fu-lin. OUTPUT FEEDBACK H GUARANTEED COST ROBUST DECENTRALIZED CONTROL FOR BUILDING STRUCTURE WITH UNCERTAIN PARAMETERS[J]. Engineering Mechanics, 2018, 35(4): 160-167. DOI: 10.6052/j.issn.1000-4750.2017.01.0032

不确定结构输出反馈H保性能鲁棒分散控制研究

基金项目: 135重大专项(2017YFC0703600);国家自然科学基金项目(97315301-07,51408142);教育部创新团队项目(IRT13057)
详细信息
    作者简介:

    潘兆东(1986-),男,陕西人,讲师,博士,主要从事工程结构减震控制研究(E-mail:pzd0101@126.com);周福霖(1939-),男,广东人,教授,硕士,中国工程院院士,主要从事结构抗震与减震方面的研究(E-mail:zhoufl@cae.cn).

    通讯作者:

    谭平(1973-),男,湖南人,教授,博士,主要从事结构抗震、减隔震研究(E-mail:ptan@gzhu.edu.cn).

  • 中图分类号: TU352.1

OUTPUT FEEDBACK H GUARANTEED COST ROBUST DECENTRALIZED CONTROL FOR BUILDING STRUCTURE WITH UNCERTAIN PARAMETERS

  • 摘要: 为了有效处理土木工程结构分散振动控制中模型参数不确定性对系统性能的影响,提出了同时满足多个控制目标的输出反馈H保性能鲁棒分散控制算法。基于Lyapunov稳定性理论和线性矩阵不等式方法,给出并证明了H保性能鲁棒分散控制器存在的充分条件,在此基础上,采用变量替换方法,建立了输出反馈H保性能鲁棒分散控制算法,进而通过引入约束条件,将其转化为具有线性矩阵不等式约束的凸优化问题。针对一12层结构进行分散控制设计、集中控制设计及仿真分析。结果表明,对于具有较大不确定性的结构,输出反馈H保性能鲁棒分散控制算法较传统线性二次高斯集中控制算法有更理想的控制效果。
    Abstract: An output feedback H guaranteed cost robust decentralized control algorithm is proposed here for dealing with the influence of the parameter uncertainties of a building structure, which can meet the requirements of multiple control objectives simultaneously. Based on Lyapunov stability theory and LMI method, the sufficient conditions for the existence of a robust H guaranteed cost decentralized controller is developed and proved. Then the output feedback H guaranteed cost robust decentralized control algorithm is established by using a variable substitution method. Furthermore, by introducing the constraint conditions, the H guaranteed cost robust controller design is transformed into a convex optimization problem with linear matrix inequality constraints. A 12-story building is selected as a numerical example to illustrate the control performances of the proposed decentralized algorithm. Numerical simulation results indicate that for the building structure with large uncertain parameters, the proposed output feedback H guaranteed cost robust decentralized control algorithm has better control effect than that of traditional LQG centralized control algorithm.
  • [1] 席裕庚. 动态大系统方法导论[M]. 北京:国防工业出版社, 1988:160-161. Xi Yugeng. Introduction of large scale dynamic systems[M]. Beijing:National Defense of Industry Press, 1988:160-161. (in Chinese)
    [2] Lynch J P, Law K H. Decentralized control techniques for large-scale civil structural systems[C]//Proceedings of the 20th International Modal Analysis Conference (IMAC XX). Los Angeles. Bellingham:Society of Photo-Optical Instrumentation Engineers, 2002:406-413.
    [3] Xu B, Wu Z S, Yokoyama K. Neural networks for decentralized control of cable-stayed bridge[J]. Journal of Bridge Engineering, 2003, 8(4):229-236.
    [4] Rofooei F R, Monajemi-Nezhad S. Decentralized control of tall buildings[J]. The Structural Design of Tall and Special Buildings, 2006, 15(2):153-170.
    [5] Monajemi-Nezhad S, Rofooei F R. Decentralized sliding mode control of multistory buildings[J]. The Structural Design of Tall and Special Buildings, 2007, 16(2):181-204.
    [6] Loh C H, Chang C M. Application of centralized and decentralized control to building structure:analytical study[J]. Journal of Engineering Mechanics, 2008, 134(11):970-982.
    [7] 李宏男, 李瀛, 李钢. 地震作用下建筑结构的分散控制研究[J]. 土木工程学报, 2008, 41(9):27-33. Li Hongnan, Li Ying, Li Gang. Decentralized control of structures under earthquakes[J]. China Civil Engineering Journal, 2008, 41(9):27-33. (in Chinese)
    [8] Wang Y. Wireless sensing and decentralized control for civil structures:theory and implementation[D]. Stanford, California:Stanford University, 2007.
    [9] Wang Y, Lynch J P, Law K H. Decentralized H controller design for large-scale civil structures[J]. Earthquake Engineering & Structural Dynamics, 2009, 38(3):377-401.
    [10] 汪权, 王建国, 裴阳阳. 地震作用下高层建筑结构的分散模糊迭代学习控制研究[J]. 计算力学学报, 2012, 29(5):681-686. Wang Quan, Wang Jianguo, Pei Yangyang. Decentralized fuzzy iterative learning control of tall buildings under earthquakes[J]. Chinese Journal of Computational mechanics, 2012, 29(5):681-686. (in Chinese)
    [11] 王建. 非线性不确定性结构自适应模糊分散控制理论与试验研究[D]. 哈尔滨:哈尔滨工业大学, 2011. Wang Jian. Decentralized adaptive fuzzy control theory and experiments for nonlinear uncertain structures[D]. Harbin:Harbin Institute of Technology, 2011. (in Chinese)
    [12] 蒋扬, 周星德, 王玉. 建筑结构鲁棒分散控制方法研究[J]. 振动与冲击, 2012, 31(6):37-41. Jiang Yang, Zhou Xingde, Wang Yu. A robust decentralized control method for architectural structures[J]. Journal of Vibration and Shock, 2012, 31(6):37-41. (in Chinese)
    [13] 雷鹰, 伍德挺, 刘中华. 一种适用于大型工程结构的分散振动控制方法[J]. 振动工程学报, 2012, 25(4):411-417. Lei Ying, Wu Deting, Liu Zhonghua. A decentralized vibration control algorithm for large-scale engineering structures[J]. Journal of Vibration Engineering, 2012, 25(4):411-417. (in Chinese)
    [14] 潘兆东, 谭平, 周福霖. 大型结构分散控制系统的优化研究[J]. 工程力学, 2017, 34(1):154-162. Pan Zhaodong, Tan Ping, Zhou Fulin. Study on optimization of large-scale structural decentralized control[J]. Engineering Mechanics, 2017, 34(1):154-162. (in Chinese)
    [15] 潘兆东, 谭平, 周福霖. 大型结构小增益分散稳定化容错控制研究[J]. 工程力学, 2017, 34(6):128-136. Pan Zhaodong, Tan Ping, Zhou Fulin. Decentralized stable fault-tolerant control for large-scale structure[J]. Engineering Mechanics, 2017, 34(6):128-136. (in Chinese)
    [16] Ma T W, Xu N S, Tang Y. Decentralized robust control of building structures under seismic excitations[J]. Earthquake Engineering & Structural Dynamics, 2008, 37(1):121-140.
    [17] 孙万泉, 李庆斌. 基于LMI的高层建筑结构分散H2/H 鲁棒控制[J]. 地震工程与工程振动, 2007, 27(6):218-222. Sun Wanquan, Li Qingbin. Decentralized H2/H robust control for large-scale building structure based on linear matrix inequalities(LMI)[J]. Journal of Earthquake Engineering and Engineering Vibration, 2007, 27(6):218-222. (in Chinese)
    [18] 俞立. 鲁棒控制:线性矩阵不等式处理方法[M]. 北京:淸华大学出版社, 2002:8-9, 87-88. Yu Li. Robust control:linear matrix inequality approach[M]. Beijing:Tsinghua University Press, 2002:8-9, 87-88. (in Chinese)
  • 期刊类型引用(1)

    1. 蒋伟,刘纲,王涛,高凯. 基于自适应伸缩因子的变论域模糊PID振动控制方法. 工程力学. 2021(11): 23-32 . 本站查看

    其他类型引用(1)

计量
  • 文章访问数:  298
  • HTML全文浏览量:  56
  • PDF下载量:  30
  • 被引次数: 2
出版历程
  • 收稿日期:  2017-01-07
  • 修回日期:  2017-10-12
  • 刊出日期:  2018-04-24

目录

    ZHOU Fu-lin

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回