具有复位功能的阻尼耗能支撑滞回模型与抗震性能研究

徐龙河, 王坤鹏, 谢行思, 李忠献

徐龙河, 王坤鹏, 谢行思, 李忠献. 具有复位功能的阻尼耗能支撑滞回模型与抗震性能研究[J]. 工程力学, 2018, 35(7): 39-46. DOI: 10.6052/j.issn.1000-4750.2017.03.0204
引用本文: 徐龙河, 王坤鹏, 谢行思, 李忠献. 具有复位功能的阻尼耗能支撑滞回模型与抗震性能研究[J]. 工程力学, 2018, 35(7): 39-46. DOI: 10.6052/j.issn.1000-4750.2017.03.0204
XU Long-he, WANG Kun-peng, XIE Xing-si, LI Zhong-xian. STUDY ON HYSTERETIC MODEL AND SEISMIC PERFORMANCE OF DAMPING ENERGY DISSPATION BRACE WITH SELF-CENTERING CAPABILITY[J]. Engineering Mechanics, 2018, 35(7): 39-46. DOI: 10.6052/j.issn.1000-4750.2017.03.0204
Citation: XU Long-he, WANG Kun-peng, XIE Xing-si, LI Zhong-xian. STUDY ON HYSTERETIC MODEL AND SEISMIC PERFORMANCE OF DAMPING ENERGY DISSPATION BRACE WITH SELF-CENTERING CAPABILITY[J]. Engineering Mechanics, 2018, 35(7): 39-46. DOI: 10.6052/j.issn.1000-4750.2017.03.0204

具有复位功能的阻尼耗能支撑滞回模型与抗震性能研究

基金项目: 国家自然科学基金项目(51578058);北京市自然科学基金项目(8172038)
详细信息
    作者简介:

    王坤鹏(1989-),男,山东人,硕士生,主要从事结构抗震研究(E-mail:14121097@bjtu.edu.cn);谢行思(1992-),男,河北人,博士生,主要从事结构抗震研究(E-mail:15125896@bjtu.edu.cn);李忠献(1961-),男,安徽人,长江学者特聘教授,博士,博导,从事工程结构抗震抗爆、减灾控制与健康监测研究(E-mail:zxli@tju.edu.cn).

    通讯作者:

    徐龙河(1976-),男,黑龙江人,教授,博士,博导,主要从事结构抗震与健康监测研究(E-mail:lhxu@bjtu.edu.cn).

  • 中图分类号: TU352.1

STUDY ON HYSTERETIC MODEL AND SEISMIC PERFORMANCE OF DAMPING ENERGY DISSPATION BRACE WITH SELF-CENTERING CAPABILITY

  • 摘要: 在传统磁流体阻尼器基础上提出了一种具有复位功能的阻尼耗能支撑,对传统Bouc-Wen模型进行了改进,建立了适用于阻尼耗能支撑的恢复力计算模型,并在Simulink环境下对改进的双Bouc-Wen模型进行仿真分析,将仿真结果与支撑有限元模拟分析结果进行了对比;基于OpenSees平台,对改进的双Bouc-Wen模型进行二次开发,并对采用具有复位功能的阻尼耗能支撑和普通防屈曲支撑的9层Benchmark钢框架结构模型进行了抗震性能对比分析。结果表明,双Bouc-Wen模型仿真得到的滞回曲线与有限元模拟得出的滞回曲线吻合较好,可以很好地描述阻尼支撑旗形滞回特性,具有复位功能的阻尼支撑可有效减小钢结构的最大层间位移及震后残余变形,阻尼耗能支撑结构具备良好的可恢复性。
    Abstract: On the basis of a traditional magnetorheological (MR) damper, a novel damping energy dissipation brace with self-centering capability is developed. A restoring force calculation model, the improved double Bouc-Wen model, is established to portray the hysteretic behaviors of the damping energy dissipation brace by improving the traditional Bouc-Wen model, which is simulated in Simulink environment, and the simulation results are compared with the finite element analysis results. The secondary development program of the improved double Bouc-Wen model is carried out based on OpenSees platform, and using a 9-story benchmark steel frame structure as a numerical example, the comparisons of the seismic performances between a structure with the damping energy dissipation braces and a structure with buckling restrained braces (BRBs) are conducted. The hysteretic curves obtained from the double Bouc-Wen model agree well with those obtained from the finite element simulation, and the flag-shaped hysteretic behaviors of the brace can be accurately portrayed by the proposed improved double Bouc-Wen model. The maximum interstory drift and residual deformation of a steel frame structure after earthquakes are effectively reduced, so that the structure with damping energy dissipation brace exhibits a good recovery performance.
  • [1] Asgarian B, Amirhesari N. A comparison of dynamic nonlinear behavior of ordinary and buckling restrained braced frames subjected to strong ground motion[J]. The Structural Design of Tall and Special Buildings, 2008, 17(2):367-386.
    [2] 周云, 钱洪涛, 褚洪民, 等. 新型防屈曲耗能支撑设计原理与性能研究[J]. 土木工程学报, 2009, 42(4):64-71. Zhou Yun, Qian Hongtao, Chu Hongmin, et al. A study on the design principle and performance of a new type of buckling-restrained brace[J]. China Civil Engineering Journal, 2009, 42(4):64-71. (in Chinese)
    [3] Ma H W, Cho C. Feasibility study on a super-elastic SMA damper with re-centering capability[J]. Materials Science and Engineering, 2008, 473(1-2):290-296.
    [4] Ma H W, Michael C H Y. Modeling of a self-centering damper and its application in structural control[J]. Journal of Constructional Steel Research, 2011, 67(4):656-666.
    [5] Christopoulos C, Tremblay R, Kim H J, et al. Self-centering energy dissipative bracing system for the seismic resistance of structures:development and validation[J]. Journal of Structural Engineering, 2008, 134(1):96-107.
    [6] Tremblay R, Lacerte M, Christopoulos C. Seismic response of multistory buildings with self-centering energy dissipative steel braces[J]. Journal of Structural Engineering, ASCE, 2008, 134(1):108-120.
    [7] Miller D J, Fahnestock L A, Eatherton M R. Self-centering buckling-restrained braces for advanced seismic performance[C]//Proceedings of the 2011 Structures Congress, Las Vegas, USA:ASCE, 2011:960-970.
    [8] Miller D J, Fahnestock L A, Eatherton M R. Development and experimental validation of a nickel-titanium shape memory alloy self-centering buckling-restrained brace[J]. Engineering Structures, 2012, 40:288-298.
    [9] Xu L H, Fan X W, Lu D C, et al. Hysteretic behavior studies of self-centering energy dissipation bracing system[J]. Steel and Composite Structures, 2016, 20(6):1205-1219.
    [10] Xu L H, Fan X W, Lu D C, et al. Development and experimental verification of a pre-pressed spring self-centering energy dissipation brace[J]. Engineering Structures, 2016, 127:49-61.
    [11] Xu L H, Fan X W, Li Z X. Cyclic behavior and failure mechanism of self-centering energy dissipation braces with pre-pressed combination disc springs[J]. Earthquake Engineering and Structural Dynamics, 2016, 46(7):1065-1080.
    [12] 徐龙河, 樊晓伟, 代长顺, 等. 预压弹簧自恢复耗能支撑受力性能分析与试验研究撑的约束比取值研究[J]. 建筑结构学报, 2016, 37(9):142-148. Xu Longhe, Fan Xiaowei, Dai Changshun, et al. Mechanical behavior analysis and experimental study on pre-pressed spring self-centering energy dissipation brace[J]. Journal of Building Structures, 2016, 37(9):142-148. (in Chinese)
    [13] 丁阳, 张路, 姚宇飞, 等. 阻尼力双向调节磁流变阻尼器的性能测试与滞回模型[J]. 工程力学, 2010, 27(2):228-234. Ding Yang, Zhang Lu, Xiao Yufei, et al. Performance test and hysteresis model of MR damper with bidirectional adjusting damping force[J]. Engineering Mechanics, 2010, 27(2):228-234. (in Chinese)
    [14] 张路. 新型磁流变阻尼器及大跨度空间结构半主动控制体系研究[D]. 天津:天津大学, 2010:15-20. Zhang Lu. New MR dampers and semi-active control system of long-span spatial structures[D]. Tianjin:Tianjin University, 2010:15-20. (in Chinese)
    [15] Weber F. Bouc-Wen model-based real-time force tracking scheme for MR dampers[J]. Smart Materials and Structures, 2013, 22(4):045012.
    [16] 高向宇, 张慧, 杜海燕, 等. 防屈曲支撑恢复力的特点及计算模型研究[J]. 工程力学, 2011, 28(6):19-28. Gao Xiangyu, Zhang Hui, Du Haiyan, et al. Study on characterization and modeling of buckling-restrained brace[J]. Engineering Mechanics, 2011, 28(6):19-28. (in Chinese)
    [17] 吴从晓, 周云, 邓雪松. 钢铅粘弹性阻尼器试验研究[J]. 工程力学, 2012, 29(3):150-155. Wu Congxiao, Zhou Yun, Deng Xuesong. Experimental study on steel-lead viscoelastic damper[J]. Engineering Mechanics, 2012, 29(3):150-155. (in Chinese)
  • 期刊类型引用(15)

    1. 贺鹏,黄选明,滕东宇,黄广华,郝祯,孙嘉伟. 大城砖-传统灰浆砌体力学特性及破坏机理试验研究. 建筑科学. 2025(01): 9-19 . 百度学术
    2. 马少春,李泽云,苗长伟,鲍鹏,孔令鹏,王梦. 不同损伤程度下历史建筑青砖抗盐侵蚀性能评价. 河南大学学报(自然科学版). 2025(02): 236-245 . 百度学术
    3. 汪源,余文,王艳,黄辉,贾彬,王汝恒. 藏式毛石砌体受压力学性能试验与数值模拟研究. 建筑结构. 2024(08): 113-119 . 百度学术
    4. 梁建国,赵一帆,陈大川,徐培军,李振华,王高峰. 注浆加固毛石砌体的受压性能试验研究. 建筑结构. 2023(24): 136-140 . 百度学术
    5. 崔玥,杨娜. 藏式山地古建筑结构特征及抗震性能. 建筑结构学报. 2023(S2): 20-31 . 百度学术
    6. 白凡,杨娜,常鹏,旦增格桑,旦增卓嘎,滕东宇. 基于模糊层次法的藏式砌体劣化风险权重系数试验标定研究. 土木与环境工程学报(中英文). 2022(02): 158-164 . 百度学术
    7. 蒋宇洪,杨娜. 基于RVE单元的石砌体有效模量计算方法. 工程力学. 2022(04): 86-99+256 . 本站查看
    8. 汪源,黄辉,贾彬,王汝恒. 传统藏式毛石砌体受压力学性能试验研究. 建筑结构. 2022(08): 118-123 . 百度学术
    9. 吴芝忠,黄辉,汪源,贾彬,王汝恒. 藏式毛石砌体抗压强度对其弹性模量和峰值应变预测. 科学技术与工程. 2022(25): 11130-11136 . 百度学术
    10. 丛宇,谭森龙,王佳豪. 藏式建筑震害分析及加固方法研究. 山西建筑. 2022(24): 24-28+51 . 百度学术
    11. 刘威,杨娜,白凡,常鹏. 基于环境激励的藏式古城墙动力特性研究. 土木工程学报. 2021(04): 45-56 . 百度学术
    12. 孙宏伟,贾艳艳,王少杰,倪韦斌,殷志凯. 现存干砌毛石墙抗震性能试验与原貌保护策略. 工程抗震与加固改造. 2021(02): 117-124 . 百度学术
    13. 常鹏,吴楠楠,王钊,杨娜,白凡. 藏式山地结构有限元模型修正及动力可靠度分析. 土木工程学报. 2020(06): 13-20+41 . 百度学术
    14. 蒋宇洪,杨娜,白凡. 基于RVE单元的藏式古建石砌体均质化研究. 工程力学. 2020(07): 110-124 . 本站查看
    15. 郑文忠,敖日格乐,王英,黄文宣. 碱矿渣陶粒混凝土砌块砌体受压本构关系. 工程力学. 2020(10): 218-227 . 本站查看

    其他类型引用(10)

计量
  • 文章访问数:  504
  • HTML全文浏览量:  50
  • PDF下载量:  122
  • 被引次数: 25
出版历程
  • 收稿日期:  2017-03-14
  • 修回日期:  2017-09-07
  • 刊出日期:  2018-07-24

目录

    /

    返回文章
    返回