爆炸荷载下钢管混凝土墩柱的动力响应研究

孙珊珊, 赵均海, 贺拴海, 崔莹, 刘岩

孙珊珊, 赵均海, 贺拴海, 崔莹, 刘岩. 爆炸荷载下钢管混凝土墩柱的动力响应研究[J]. 工程力学, 2018, 35(5): 27-35,74. DOI: 10.6052/j.issn.1000-4750.2017.03.0246
引用本文: 孙珊珊, 赵均海, 贺拴海, 崔莹, 刘岩. 爆炸荷载下钢管混凝土墩柱的动力响应研究[J]. 工程力学, 2018, 35(5): 27-35,74. DOI: 10.6052/j.issn.1000-4750.2017.03.0246
SUN Shan-shan, ZHAO Jun-hai, HE Shuan-hai, CUI Ying, LIU Yan. DYNAMIC RESPONSE OF CONCRETE-FILLED STEEL TUBE PIERS UNDER BLAST LOADINGS[J]. Engineering Mechanics, 2018, 35(5): 27-35,74. DOI: 10.6052/j.issn.1000-4750.2017.03.0246
Citation: SUN Shan-shan, ZHAO Jun-hai, HE Shuan-hai, CUI Ying, LIU Yan. DYNAMIC RESPONSE OF CONCRETE-FILLED STEEL TUBE PIERS UNDER BLAST LOADINGS[J]. Engineering Mechanics, 2018, 35(5): 27-35,74. DOI: 10.6052/j.issn.1000-4750.2017.03.0246

爆炸荷载下钢管混凝土墩柱的动力响应研究

基金项目: 高等学校博士学科点专项科研基金项目(20110205130001);中国博士后科学基金面上项目(2015M580803);中央高校基本科研业务费专项资金项目(310828173402,310828171012,310828171003)
详细信息
    作者简介:

    赵均海(1960-),男,陕西人,教授,博士,主要从事强度理论及结构抗爆方面的研究(E-mailzhaojh@chd.edu.cn);贺拴海(1962-),男,陕西人,教授,博士,主要从事桥梁结构理论及结构评估的研究(E-mail:heshai@chd.edu.cn);崔莹(1979-),男,陕西人,副教授,博士,主要从事强度理论及结构抗爆方面的研究(E-mail:cuiying126@163.com);刘岩(1984-),男,陕西人,副教授,博士,主要从事大跨空间结构方面的研究(E-mail:actor_liu@126.com).

    通讯作者:

    孙珊珊(1986-),女,河南人,工程师,博士,主要从事强度理论及结构抗爆方面的研究(E-mail:sunjin1986123@163.com)

  • 中图分类号: TU398+.9

DYNAMIC RESPONSE OF CONCRETE-FILLED STEEL TUBE PIERS UNDER BLAST LOADINGS

  • 摘要: 设计并制作了3根普通钢管混凝土墩柱和1根复式中空钢管混凝土墩柱,进行了TNT药量分别为3 kg和50 kg的3发4工况静爆试验,获得构件的迎爆面及背爆面的柱面超压分布、残余变形以及最终破坏形态,结合有限元分析,研究了爆炸荷载下钢管混凝土墩柱的动态响应、破坏模态及参数影响。研究表明:50 kg TNT作用下、比例距离为0.14 m/kg1/3时,外径同为273 mm、壁厚为7 mm的普通钢管混凝土墩柱抵抗爆炸荷载的变形能力优于中空钢管内径为50 mm、壁厚为4 mm的复式钢管混凝土墩柱;基于试验结果建立了多物质流固耦合的数值模拟方法,可有效模拟钢管混凝土墩柱在爆炸荷载下的动态响应;钢管混凝土墩柱三种典型破坏形态分别是:低超压峰值-高持时发生弯曲破坏、高超压峰值-低持时发生剪切破坏及介于两种情况之间的弯剪破坏;炸药当量为50 kg,比例距离z>0.3 m/kg1/3时,爆炸荷载下试件柱的残余变形可忽略不计;核心混凝土强度等级的增强以及含钢率的提高,可有效降低柱中点水平残余变形;提高钢管屈服强度,可降低柱中残余变形,当钢材强度等级≥345 MPa时,继续增大屈服强度对提高钢管混凝土墩柱的抗爆性能意义不大。
    Abstract: Explosion experiments of three concrete-filled steel tube piers and one composite concrete-filled steel tube piers under different charge were deployed, with a TNT charge being 3 kg and 50 kg, respectively. The cylinder overpressure distribution, residual deformation and failure pattern were obtained. With the finite element analysis, the dynamic response, failure mode and parameter influence of concrete-filled steel tube piers under blast load were studied. The results show that compared with the composite concrete-filled steel tube piers of 50 mm core steel tube diameter and 4 mm thickness, the ordinary ones are better at resisting deformation while the outer diameter is 273 mm, the TNT charge is 50 kg and the scale distance is 0.14 m/kg1/3. Based on the experimental results, multi-material flow-solid coupling simulation method was established, which effectively simulated the dynamic response of the concrete filled steel tube piers under explosion loads. Typical destruction paradigm can be categorized into flexural damage under low peak overpressure-long duration blast loading, shear fracture under high peak overpressure-short duration blast loading and bending-shear failure between the above two cases. Residual deformation is negligible when the scale distance is more than 0.3 m/kg1/3 and the explosive charge is 50 kg. Enhancing the core concrete's strength grade and enlarging the steel ratio can effectively bring down the residual deformation. Increasing the yield strength can reduce the residual deformation, however with little significance when the yield strength is greater than or equal to 345 MPa.
  • [1] Liu H B, Torres D M, Agrawal A K, et al. Simplified blast-load effects on the column and bent beam of highway bridges[J]. Journal of Bridge Engineering, 2015, 20(10):06015001-1-06015001-5.
    [2] Yi Z, Agrawal A K, Ettouney M, et al. Blast load effects on highway bridges.Ⅱ:Failure modes and multihazard correlations[J]. Journal of Bridge Engineering, 2014, 19(4):04013024-1-12.
    [3] Hu Z J, Wu L, Zhang Y F, et al. Dynamic responses of concrete piers under close-in blast loading[J]. International Journal of Damage Mechanics, 2016, 25(8):1235-1254.
    [4] 夏超逸, 张楠, 夏禾. 汽车撞击作用下车桥系统的动力响应及高速列车运行安全分析[J]. 工程力学, 2013, 30(8):119-126. Xia Chaoyi, Zhang Nan, Xia He. Dynamic responses of train-bridge system subjected to truck collision and running safety evaluation of high-speed train[J]. Engineering Mechanics, 2013, 30(8):119-126. (in Chinese)
    [5] 韩林海, 杨有福. 现代钢管混凝土结构技术[M]. 2版. 北京:中国建筑工业出版社, 2007. Han Linhai, Yang Youfu. Technology of concrete filled steel tubular structure[M]. 2nd ed. Beijing:China National Construction Industry Press, 2007. (in Chinese)
    [6] 王震, 王景全, 戚家南. 钢管混凝土组合桥墩变形能力计算模型[J]. 浙江大学学报(工学版), 2016, 50(5):864-870. Wang Zhen, Wang Jingquan, Qi Jianan. Computing model for deformation capacity of concrete filled steel tube reinforced concrete bridge columns[J]. Journal of Zhejiang University (Engineering Science), 2016, 50(5):864-870. (in Chinese)
    [7] 冯红波. 爆炸荷载作用下钢管混凝土墩柱的动力响应研究[D]. 西安:长安大学, 2006:42-46. Feng Hongbo. Dynamic response of CFST columns under explosive load[D]. Xi'an:Chang'an Unversity, 2006:42-46. (in Chinese)
    [8] Fujikura S, Bruneau M, Lopez-Garcia D. Experimental investigation of multihazard resistant bridge piers having concrete-filled steel tube under blast loading[J]. Journal of Bridge Engineering, 2008, 13(6):586-594.
    [9] 何斌. 钢管混凝土结构构件抗爆炸冲击荷载的特性研究[D]. 太原:中北大学, 2012. He Bin. Study on the characteristics of concrete filled steel tube under explosive load[D]. Taiyuan:North Unversity of China, 2012. (in Chinese)
    [10] 阎石, 刘蕾, 齐宝欣, 等. 爆炸荷载作用下方钢管混凝土墩柱的动力响应及破坏机理[J]. 防灾减灾工程学报, 2011, 31(5):477-482. Yan Shi, Liu Lei, Qi Baoxin, et al. Dynamic response and failure mechanism of concrete-filled steel square tubular column under explosive load[J]. Journal of Disaster Prevention and Mitigation Engineering, 2011, 31(5):477-482. (in Chinese)
    [11] 李国强, 翟海燕, 杨涛春, 等. 钢管混凝土墩柱抗爆性能试验研究[J]. 建筑结构学报, 2013, 34(12):69-76. Li Guoqiang, Zhai Haiyan, Yang Taochun, et al. Experimental study of concrete-filled steel tubular columns under blast loading[J]. Journal of Building Structures, 2013, 34(12):69-76. (in Chinese)
    [12] 王宏伟, 吴成清, 杨立燥, 等. 足尺钢管混凝土墩柱爆炸作用后残余承载力试验研究[J]. 建筑结构学报, 2016, 37(5):155-160. Wang Hongwei, Wu Chengqing, Yang Lizao, et al. Experimental research on residual bearing capacity of full-scale concrete-filled steel tubular column after explosion[J]. Journal of Building Structures, 2016, 37(5):155-160. (in Chinese)
    [13] 中国工程建设协会标准编写组. CECS28:2012, 钢管混凝土结构技术规程[S]. 北京:中国计划出版社, 2012. The Industry Standards Compilation Group of the Architectural Society of China. CECS28:2012, Specification for concrete-filled steel tubular structures[S]. Beijing:China Planning Press, 2012. (in Chinese)
    [14] Williams G D. Analysis and response mechanisms of blast-loaded reinforced concrete columns[D]. Austin The University of Texas at Austin, 2009.
    [15] 石少卿, 康建功, 汪敏, 等. ANSYS/LS-DYNA在爆炸与冲击领域内的工程应用[M]. 北京:中国建筑工业出版社, 2011. Shi Shaoqing, Kang Jiangong, Wang Min, et al. Engineering applications of ansys/ls-dyna in explosion and shock field[M]. Beijing:China Architecture & Building Press, 2011. (in Chinese)
    [16] 李忠献, 何振锋, 师燕超, 等. 爆炸荷载下钢筋混凝土柱动态响应分析的宏观模型[J]. 工程力学, 2015, 32(9):76-83. Li Zhongxian, He Zhenfeng, Shi Yanchao, et al. Macro model for dynamic analysis of reinforced concrete columns under blast loading[J]. Engineering Mechanics, 2015, 32(9):76-83. (in Chinese)
    [17] 杨仁树, 丁晨曦, 王雁冰, 等. 爆炸应力波与爆生气体对被爆介质作用效应研究[J]. 岩石力学与工程学报, 2016, 35(2):3501-3506. Yang Renshu, Ding Chenxi, Wang Yanbing, et al. Action-effect study of medium under loading of explosion stress wave and explosion gas[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2):3501-3506. (in Chinese)
    [18] 陈万祥, 郭志昆, 邹慧辉, 等. 标准火灾后钢管RPC柱抗近距离爆炸荷载的试验研究[J]. 工程力学, 2017, 34(1):180-191. Chen Wanxiang, Guo Zhikun, Zou Huihui, et al. Near-field blast-resistant test of reactive power concrete filled steel tubular column after exposure to standard fire[J]. Engineering Mechanics, 2017, 34(1):180-191. (in Chinese)
  • 期刊类型引用(11)

    1. 朱昌星,吴大志,孙家鑫. 碳纤维增韧注浆体试块动态压缩力学特性及其数值模拟. 中国矿业大学学报. 2024(03): 600-612 . 百度学术
    2. 刘中辉,匡志平. 钢管混凝土柱抗爆性能试验研究综述. 结构工程师. 2024(04): 187-194 . 百度学术
    3. 武伟超,夏柳,潘艾刚,王亚飞,王强. 多点同时爆炸对钢筋混凝土方柱构件的毁伤特性. 爆炸与冲击. 2023(12): 96-109 . 百度学术
    4. 陈万祥,郭志昆,罗立胜,袁鹏. 考虑面力效应的HFR-LWC梁抗爆理论模型与试验验证. 工程力学. 2021(02): 77-91 . 本站查看
    5. 周清,齐麟. 不同轴压比与剪跨比的RC异形柱抗爆分析. 山东建筑大学学报. 2021(01): 37-45 . 百度学术
    6. 胡志坚,刘辉. 桥梁结构抗爆研究现状与展望. 中山大学学报(自然科学版). 2021(05): 13-22 . 百度学术
    7. 俞鑫炉,付应乾,董新龙,周风华,宁建国,徐纪鹏. 轴向钢筋增强混凝土一维应力层裂实验研究. 工程力学. 2020(01): 80-87 . 本站查看
    8. 赵均海,董婧,张冬芳,李莹萍. FRP钢管混凝土柱抗爆性能数值模拟. 建筑科学与工程学报. 2020(02): 35-43 . 百度学术
    9. 满轲,刘晓丽. 周边空孔效应对爆破振速及围岩损伤的影响研究. 工程力学. 2020(11): 127-134+184 . 本站查看
    10. 邹慧辉,陈万祥,郭志昆,周子欣. 火灾后钢管RPC柱近距离爆炸残余承载力研究. 工程力学. 2019(07): 184-196 . 本站查看
    11. 吴赛,代岩. 复式钢管混凝土柱抗爆性能影响因素研究. 建筑安全. 2019(09): 62-67 . 百度学术

    其他类型引用(18)

计量
  • 文章访问数:  391
  • HTML全文浏览量:  89
  • PDF下载量:  51
  • 被引次数: 29
出版历程
  • 收稿日期:  2017-03-26
  • 修回日期:  2017-08-28
  • 刊出日期:  2018-05-24

目录

    /

    返回文章
    返回