Tests on the mechanical behavior of steel shear panel dampers under axial loads
-
摘要: 该文通过5个拟静力试验检验了普通型剪切钢板阻尼器和形状优化型剪切钢板阻尼器的力学性能,分析了形状优化以及轴力对阻尼器力学性能的影响。试验结果表明:阻尼器设计公式计算值与试验结果吻合较好;阻尼器的腹板形状经过优化后,极限位移角增加33%,耗能区域由四角转移至中部,应力和应变集中现象得到明显改善,有效降低了夹持连接部位钢板的断裂损伤发生概率;与设计值相比,轴力可提高阻尼器的屈服承载力但使刚度有所下降;基于装配式思想设计的全螺栓连接阻尼器易于更换,较传统焊接的连接方式避免了焊接应力的不利影响,大幅度减少了修复时间与成本。Abstract: The mechanical behavior of five steel shear panel dampers with or without optimized shapes were tested cyclically to examine the influence of shape optimization and axial loads. The test results show that the stiffness and strength design equations can predict the behavior with less difference to the test values. The ultimate shear deformation of the optimized dampers is 33% larger than the traditional one without optimization. Unlike the traditional damper where plasticity was concentrated in the four corners, the optimized damper starts to yield from the center of the panel, which significantly improves the plasticity strain and stress concentration, thus reduces the fracture probability. Compared with the design values, axial loads can increase the shear bearing force, but decreases the stiffness. Finally, it is found that the all-bolt assembled damper can be easily replaced, and avoid the adverse effect from welding, thus significantly reduce the repair time and cost.
-
-
[1] Kelly J M, Skinner R I, Heine A J. Mechanisms of energy absorption in special devices for use in earthquake resistant structures[J]. Bulletin of N. Z. society for Earthquake Engineering, 1972, 5(3):63-88. [2] Okazaki T, Engelhardt M D. Cyclic loading behavior of EBF links constructed of ASTM A992 steel[J]. Journal of Constructional Steel Research, 2007, 63(6):751-765. [3] Ge H, Chen Z, Usami T. Hysteretic Model of Stiffened Shear Panel Dampers[J]. Journal of Structural Engineering, 2006, 132(3):478-483. [4] Ohsaki M, Nakajima T. Optimization of link member of eccentrically braced frames for maximum energy dissipation[J]. Journal of Constructional Steel Research, 2012, 75:38-44. [5] Zhang C, Zhang Z, Shi J. Development of high deformation capacity low yield strength steel shear panel damper[J]. Journal of Constructional Steel Research, 2012, 75(7):116-130. [6] Liu Y, Aoki T, Shimoda M. Strain distribution measurement of a shear panel damper developed for bridge structure[J]. Journal of Structures, 2013, 9(12):1-11. [7] Liu Y, Shimoda M. Shape optimization of shear panel damper for improving the deformation ability under cyclic loading[J]. Structural and Multidisciplinary Optimization, 2013, 48(2):427-435. [8] Deng K, Pan P, Sun J, et al. Shape optimization design of steel shear panel dampers[J]. Journal of Constructional Steel Research, 2014, 99(8):187-193. [9] 邓开来, 潘鹏. 变截面软钢剪切阻尼器试验研究[J]. 工程力学, 2016, 33(5):82-88. Deng Kailai, Pan Peng. Experimental Study of Steel Shear Panel Dampers With Varying Cross-Sections[J]. Engineering Mechanics, 2016, 33(5):82- 88. (in Chinese) [10] GB 50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010, Code for seismic design of buildings[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese) -
期刊类型引用(7)
1. 郑国足,韩建平. 轴向拉压式U型厚壁金属波纹管阻尼器抗震性能研究. 地震工程学报. 2024(06): 1318-1330 . 百度学术
2. 田明仑,杨伟松,吴宦龙,李海生,王向英. 基于滑移连接的分阶屈服金属连梁阻尼器抗震性能研究. 工程抗震与加固改造. 2023(01): 62-70 . 百度学术
3. 朱柏洁,张令心,姜冰. 采用消能连梁的高层框架-核心筒结构减震方案分析. 土木工程与管理学报. 2023(01): 34-39+70 . 百度学术
4. 刘正欢,潘文,双超,赵德金,戴宇杰. 连梁低屈服点钢剪切型阻尼器力学性能研究. 建筑技术. 2023(19): 2376-2382 . 百度学术
5. 吴山,何浩祥,兰炳稷,陈建伟. 分级屈服型金属套管阻尼器减震理论与试验研究. 工程力学. 2022(07): 147-157 . 本站查看
6. 吴杰,张超,王廷彦,戚玉亮. 轴向效应对剪切钢板连梁阻尼器的性能影响分析. 建筑结构. 2021(S2): 713-719 . 百度学术
7. 高华国,张令心,史欣鑫,宁宝宽,杨帆. Z型支撑分级屈服阻尼器抗震性能研究. 土木工程学报. 2020(S2): 94-100 . 百度学术
其他类型引用(9)
计量
- 文章访问数: 420
- HTML全文浏览量: 78
- PDF下载量: 29
- 被引次数: 16