考虑侧阻与端阻影响的基桩水平承载力传递矩阵解

竺明星, 龚维明, 卢红前, 王磊

竺明星, 龚维明, 卢红前, 王磊. 考虑侧阻与端阻影响的基桩水平承载力传递矩阵解[J]. 工程力学, 2018, 35(S1): 230-238. DOI: 10.6052/j.issn.1000-4750.2017.05.S045
引用本文: 竺明星, 龚维明, 卢红前, 王磊. 考虑侧阻与端阻影响的基桩水平承载力传递矩阵解[J]. 工程力学, 2018, 35(S1): 230-238. DOI: 10.6052/j.issn.1000-4750.2017.05.S045
ZHU Ming-xing, GONG Wei-ming, LU Hong-qian, WANG Lei. Transfer matrix solutions for lateral behavior of pile foundation considering the skin and end resistance effect[J]. Engineering Mechanics, 2018, 35(S1): 230-238. DOI: 10.6052/j.issn.1000-4750.2017.05.S045
Citation: ZHU Ming-xing, GONG Wei-ming, LU Hong-qian, WANG Lei. Transfer matrix solutions for lateral behavior of pile foundation considering the skin and end resistance effect[J]. Engineering Mechanics, 2018, 35(S1): 230-238. DOI: 10.6052/j.issn.1000-4750.2017.05.S045

考虑侧阻与端阻影响的基桩水平承载力传递矩阵解

基金项目: 中国博士后科学基金面上项目(2017M611955);江苏省博士后科研资助计划项目(1701028B);中能建江苏院科技项目(32-JK-2016-001);国家重点基础研究发展计划(973计划)项目(2013CB036304)
详细信息
    作者简介:

    龚维明(1963-),男,江苏人,教授,博士,博导,主要从事桩基工程理论研究(E-mail:wmgong@seu.edu.cn);卢红前(1971-),男,江苏人,教授级高工,博士后合作导师,主要从事风电设计工作研究(E-mail:luhongqian@jspdi.com.cn);王磊(1975-),男,江苏人,高工,硕士,主要从事风电、光伏等新能源设计工作(E-mail:wanglei@jspdi.com.cn).

    通讯作者:

    竺明星(1985-),男,江苏人,博士后,主要从事桩基工程理论研究(E-mail:zhumingxing@jspdi.com.cn).

  • 中图分类号: TU473.1+1

Transfer matrix solutions for lateral behavior of pile foundation considering the skin and end resistance effect

  • 摘要: 为研究桩侧竖向摩阻力、桩端竖向阻力及水平剪应力对基桩水平承载特性的影响,该文首先根据桩侧摩阻力三折线τ-s曲线推导得出了附加弯矩-转角本构模型线性解析表达式。随后在四弹簧模型基础上结合该文所提出的桩侧、桩端附加弯矩以及桩端水平剪力本构关系进而建立桩身受力微分方程,并采用Laplace变换解得桩身弹性、塑性段的传递矩阵系数解析解。最后在给出的迭代求解方法基础上进而求得考虑侧阻与端阻影响的基桩水平承载力响应解。通过两组案例对比分析不但验证了该文推导的正确性,也证明了该文所提出的桩侧、桩端附加弯矩以及桩端水平剪力本构模型的合理性;同时结果也表明当地基土体较好、桩径较大时桩侧附加弯矩Ms、桩端附加弯矩Mb和剪力Fb对水平承载特性影响不可忽略。
    Abstract: To investigate the contributions of vertical skin friction, vertical end resistance and horizontal shear stress of pile tip to the lateral bearing capacity of a pile foundation, this work firstly deduces analytical expression of a linear constitutive model characterizing the relationship between additional moment and slope based on the trilinear τ-s curve model of pile shafts. Furthermore, combining the four-type spring model with the presented constitutive relations for additional moment of pile shafts and pile ends, as well as the shear force of pile tip, the differential equations for a pile section is established and the corresponding transfer matrix coefficients for piles in elastic and plastic stage are derived analytically by means of Laplace transformation. Finally, transfer matrix solutions for the lateral behavior of a pile foundation is obtained on the basis of a proposed iterative methodology. The agreement between test data and the calculated results by the proposed method is quite good, which verifies the correctness of the derivation and confirms the rationality of the produced constitutive relations for additional moment of pile shafts, as well as additional moment and shear force of pile tip. Moreover, the comparison also implies that the values of additional moment Ms of pile shafts, additional moment Mb and shear force Fb of pile ends have a significant influence on the lateral load-bearing capacity of piles when large-diameter piles are embedded in stiff materials.
  • [1] Basu D. Analysis of laterally loaded pile in layered soil[D]. West Lafayette:Purdue University, 2006:10-14.
    [2] Dodds A M, Martin G R. Modeling pile behavior in large pile groups under lateral loading[R]. Buffalo:Multidisciplinary Center for Earthquake Engineering Research, 2007:56-58.
    [3] Lam I P, Martin G R. Seismic Design of Highway Bridge Foundations[R]. Virginia:Department of Transportation, Federal Highway Administration, 1986:44-45.
    [4] Mcvay M C, Niraula L. Development of P-Y curves for large diameter piles/drilled shafts in limestone for FBPIER[R]. Florida:Civil and Coastal Engineering Dept, University of Florida, 2004.
    [5] 王伯惠, 上官兴. 中国钻孔灌注桩新发展[M]. 北京:人民交通出版社, 1999:89-90. Wang Bohui, Shangbuan Xing. New development for bored pile in China[M]. Beijing:China Communication Press, 1999:89-90. (in Chinese)
    [6] Ashour M, Helal A. Contribution of vertical skin friction to the lateral resistance of large-diameter shafts[J]. Journal of Bridge Engineering, 2014, 19(2):289-302.
    [7] Alikhanlou F. A discrete model for the analysis of short pier foundations in clays[D]. Lubbock:Texas Technology University, 1981.
    [8] Gerolymos N, Gazetas G. Winkler model for lateral response of rigid caisson foundations in linear soil[J]. Soil Dynamics and Earthquake Engineering, 2006, 26(5):347-361.
    [9] Varun, Assimaki D, Gazetas G. A simplified model for lateral response of large diameter caisson foundationsLinear elastic formulation[J]. Soil Dynamics and Earthquake Engineering, 2009, 29:268-291.
    [10] 肖宏彬. 竖向荷载作用下大直径桩的荷载传递理论及应用研究[D]. 长沙:中南大学, 2005. Xiao Hongbin. Theoretical and application research on load transfer of vertically loading large diameter piles[D]. Changsha:Central South University, 2005. (in Chinese)
    [11] 李灿. 大直径钢管桩水平承载特性研究[D]. 大连:大连理工大学, 2012. Li Can. A study on bearing capacity performance of large-diameter monopile foundation under lateral loads[D]. Dalian:Dalian University of Technology, 2012. (in Chinese)
    [12] Gerolymos N, Gazetas G. Static and dynamic response of massive caisson foundations with soil and interface nonlinearities-validation and results[J]. Soil Dynamics and Earthquake Engineering, 2006, 26(5):377-394.
    [13] JTG D63-2007, 公路桥涵地基与基础设计规范[S]. 北京:人民交通出版社, 2007. JTG D63-2007, Code for design of ground base and foundation of highway bridges and culverts[S]. Beijing:China Communication Press, 2007. (in Chinese)
    [14] Gerolymos N, Gazetas G. Development of Winkler model for static and dynamic response of caisson foundations with soil and interface nonlinearities[J]. Soil Dynamics and Earthquake Engineering, 2006, 26:363-376.
    [15] Karapiperis K, Gerolymos N. Combined loading of caisson foundation in cohesive soil:finite element versus Winkler modeling[J]. Computers and Geotechnics, 2014, 56:100-120.
    [16] Salgado R. The engineering of foundations[M]. New York:McGraw-Hill, 2008:582-583.
    [17] 费康. ABAQUS在岩土工程中的应用[M]. 北京:中国水利水电出版社, 2010. Fei Kang. The application of ABAQUS in geotechnical engineering[M]. Beijing:China Water & Power Press, 2010. (in Chinese)
    [18] Zhu M, Zhang Y, Gong W, et al. Generalized solutions for axially and laterally loaded piles in multilayered soil deposits with transfer matrix method[J]. International Journal of Geomechanics, 2017, 17(4):04016104.
    [19] 竺明星. 组合荷载作用下被动桩承载机理研究[D]. 南京:东南大学, 2016. Zhu Mingxing. Research on bearing mechanism of passive pile under combined loads[D]. Nanjing:Southeast University, 2016. (in Chinese)
    [20] 竺明星, 龚维明, 何小元. 成层地基土中水平受荷桩桩身响应的矩阵传递解[J]. 岩土工程学报, 2015, 37(增刊2):46-50. Zhu Mingxing, Gong Weiming, He Xiaoyuan. Transfer matrix solutions for responses of laterally loaded piles in multilayered soil deposits[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(Suppl 2):46-50. (in Chinese)
    [21] 王友凯, 龚耀清. 任意荷载作用下层状横观各向同性弹性地基的直角坐标解[J]. 工程力学, 2006, 23(5):9-13. Wang Youkai, Gong Yaoqing. Analytical solution of transversely isotropic elastic multilayered subgrade under arbitrary loading in rectangular coordinates[J]. Engineering Mechanics, 2016, 237(5):9- 13. (in Chinese)
    [22] Bhushan K, Fong P T, Haley S C. Lateral load tests on drilled piers in stiff clays[J]. Journal of the Geotechnical Engineering Division, 1979, 105(8):969-985.
    [23] American Petroleum Institute. Recommended practice for planning, designing and constructing fixed offshore platforms-working stress design[S]. Washington:API Recommended Practice 2A-WSD (RP 2AWSD), 2000.
  • 期刊类型引用(11)

    1. 康厚军,钱登宇,苏潇阳,张晓宇,丛云跃. 刚构体系斜拉桥塔柱计算长度系数求解方法研究. 工程力学. 2025(01): 44-52 . 本站查看
    2. 张晓笛,段冰,吴健,王金昌,杨仲轩,龚晓南,徐荣桥. 混凝土芯水泥土复合桩竖向承载特性分析方法. 岩土力学. 2024(01): 173-183 . 百度学术
    3. 江杰,柴文成,张探,龙逸航. 基于T-P模型的桩-桩水平振动相互作用研究. 工程力学. 2023(01): 87-99 . 本站查看
    4. 张晓笛,王金昌,杨仲轩,龚晓南,徐荣桥. 基于状态空间法的阶梯型变截面水平受荷桩分析方法. 岩土工程学报. 2023(09): 1944-1952 . 百度学术
    5. 黄申,翟恩地,许成顺,孙毅龙. 考虑附加抗力影响的单桩水平受力分析方法. 工程力学. 2022(06): 156-168 . 本站查看
    6. 尹平保,王翱,赵衡,杨铠波,赵明华. 斜坡段桥梁基桩受力与变形分析的传递矩阵法. 湖南大学学报(自然科学版). 2022(11): 216-224 . 百度学术
    7. 王洋,龚维明,竺明星,戴国亮,万志辉. 砂土中水平循环荷载下单桩式海上风电体系自振频率偏移规律. 中南大学学报(自然科学版). 2022(11): 4372-4380 . 百度学术
    8. 张小玲,赵景玖,孙毅龙,许成顺. 基于圆孔扩张理论的桩基水平承载力计算方法. 工程力学. 2021(02): 232-241+256 . 本站查看
    9. 王董平,赵成光. 较大水平荷载桩基在储煤棚设计中的应用. 煤炭工程. 2021(01): 33-37 . 百度学术
    10. 付臣志,江杰,欧孝夺,龙逸航,张探. 砂土地基中刚性单桩水平极限承载力改进计算方法. 中南大学学报(自然科学版). 2021(10): 3668-3679 . 百度学术
    11. 邢康宇,吴文兵,张凯顺,刘浩. 基于改进应变楔模型的大直径桩基水平承载力分析方法. 安全与环境工程. 2020(03): 200-207 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  240
  • HTML全文浏览量:  37
  • PDF下载量:  36
  • 被引次数: 16
出版历程
  • 收稿日期:  2017-05-23
  • 修回日期:  2017-11-12
  • 刊出日期:  2018-06-29

目录

    /

    返回文章
    返回