运动方程自适应步长求解的一个新进展——基于EEP超收敛计算的线性有限元法

NEW DEVELOPMENT OF SOLUTION OF EQUATIONS OF MOTION WITH ADAPTIVE TIME-STEP SIZE——LINEAR FEM BASED ON EEP SUPERCONVERGENCE TECHNIQUE

  • 摘要: 该文采用最简单的Galerkin型线性单元,对运动方程构建了简捷高效的单步法递推公式;进而基于EEP超收敛计算技术,开发了单元步长自动优化和结点位移精度修正两项关键技术,可在整个时域上得到误差分布均匀且逐点满足给定的误差限的解答——堪称数值解析解。该文给出了单自由度和多自由度的数值算例以验证本法的有效性。

     

    Abstract: This paper uses the simplest linear finite elements of the Galerkin type and gives a compact and efficient recurrence solution formula for equations of motion. Further, based on the EEP (Element Energy Projection) super-convergence technique, two critical techniques, i.e. adaptive time-step size and recovery of nodal displacement accuracy, have been developed, enabling a linear finite element solution with errors uniformly distributed and satisfying the pre-specified error tolerance at any moment in the whole time domain. Numerical examples of both single and multiple degreed systems are given to verify the validity of the proposed method.

     

/

返回文章
返回