轨道结构建模精细化程度对高速铁路连续梁桥地震易损性的影响

魏标, 杨添涵, 蒋丽忠

魏标, 杨添涵, 蒋丽忠. 轨道结构建模精细化程度对高速铁路连续梁桥地震易损性的影响[J]. 工程力学, 2018, 35(4): 16-23,51. DOI: 10.6052/j.issn.1000-4750.2017.05.ST06
引用本文: 魏标, 杨添涵, 蒋丽忠. 轨道结构建模精细化程度对高速铁路连续梁桥地震易损性的影响[J]. 工程力学, 2018, 35(4): 16-23,51. DOI: 10.6052/j.issn.1000-4750.2017.05.ST06
WEI Biao, YANG Tian-han, JIANG Li-zhong. THE EFFECTS OF MODEL REFINEMENT OF BALLASTLESS TRACKS ON THE SEISMIC VULNERABILITY OF A CONTINUOUS BRIDGE ON A HIGH-SPEED RAILWAY[J]. Engineering Mechanics, 2018, 35(4): 16-23,51. DOI: 10.6052/j.issn.1000-4750.2017.05.ST06
Citation: WEI Biao, YANG Tian-han, JIANG Li-zhong. THE EFFECTS OF MODEL REFINEMENT OF BALLASTLESS TRACKS ON THE SEISMIC VULNERABILITY OF A CONTINUOUS BRIDGE ON A HIGH-SPEED RAILWAY[J]. Engineering Mechanics, 2018, 35(4): 16-23,51. DOI: 10.6052/j.issn.1000-4750.2017.05.ST06

轨道结构建模精细化程度对高速铁路连续梁桥地震易损性的影响

基金项目: 国家自然科学基金项目(51778635,51778630);中南大学战略先导专项(2016CSU001);新建成都至兰州铁路试验段(成都至川主寺段)工程试验项目(CLRQT-2015-010);中铁二院铁路桥梁减震卡榫及新型防落梁装置研究项目(科2016-38)
详细信息
    作者简介:

    魏标(1982-),男,江苏人,副教授,博士,副系主任,主要从事桥梁抗震研究(E-mail:weibiao@csu.edu.cn);杨添涵(1992-),男,河北人,硕士,主要从事桥梁抗震研究(E-mail:yangtianhan@csu.edu.cn).

    通讯作者:

    蒋丽忠(1971-),男,湖南人,教授,博士,副院长,国家工程实验室常务副主任,从事桥梁抗震研究(E-mail:lzhjiang@csu.edu.cn).

  • 中图分类号: U442.5+5

THE EFFECTS OF MODEL REFINEMENT OF BALLASTLESS TRACKS ON THE SEISMIC VULNERABILITY OF A CONTINUOUS BRIDGE ON A HIGH-SPEED RAILWAY

  • 摘要: 为探究CRTS Ⅱ板式无砟轨道结构建模精细化程度对高速铁路连续梁桥地震易损性曲线的影响,以一座48 m+80 m+48 m高速铁路预应力混凝土连续梁桥为例,采用有限元分析软件OpenSEES分别建立四个轨道结构建模精细化程度不同的线桥一体化模型,进行了非线性时程分析和易损性分析,构造了桥梁各关键构件和轨道结构各部件的易损性曲线。计算结果表明,在建立轨道-桥梁一体化模型研究高铁连续梁桥抗震性能时,轨道结构建模精细化程度对滑动层的地震易损性曲线影响很大。随着轨道结构建模的精细化程度降低,滑动层发生地震破坏的概率变大。同时,轨道结构建模越简单,滑动支座发生破坏的概率略微增加,桥墩发生破坏的概率略微减小。此外,轨道结构建模的精细化程度对CA层、扣件、桩基等构件的地震易损性曲线基本上没有影响。
    Abstract: By taking a high-speed railway prestressed concrete continuous girder bridge with spans of 48 m+80 m+48 m as an example, the effects of the model refinement of ballastless tracks on the seismic vulnerability were analyzed. The software OpenSEES is used to build four track-bridge models with different model refinement levels of the ballastless tracks. A large number of vulnerability curves of the bridge and track components were obtained. The results show that the seismic vulnerability curves of the sliding layer are greatly influenced by the model refinement of track structure. As the model refinement of track structures is reduced, the failure probability of the sliding layer increases, while it has less influence on the vulnerability curves of the sliding bearing and the pier. Similarly, the sliding bearings are a little more vulnerable with the less refined ballastless track model. On the contrary, the piers are a little less vulnerable. In addition, the model refinement of track structures has feeble influence on the seismic vulnerability curves of the CA layer, fasteners, piles and other components.
  • [1] Yan B, Dai G L. Seismic pounding and protection measures of simply-supported beams considering interaction between continuously welded rail and bridge[J]. Structural Engineering International, 2013, 23(1):61-67.
    [2] Ju S H. Improvement of bridge structures to increase the safety of moving trains during earthquakes[J]. Engineering Structures, 2013, 56(6):501-508.
    [3] Zhang N, Xia H, Roeck G D. Dynamic analysis of a train-bridge system under multi-support seismic excitations[J]. Journal of Mechanical Science and Technology, 2010, 24(11):2181-2188.
    [4] Zeng Z P, Zhao Y G, Xu W T, et al. Random vibration analysis of train-bridge under track irregularities and traveling seismic waves using train-slab track-bridge interaction model[J]. Journal of Sound and Vibration, 2015, 342:22-43.
    [5] Chen L K, Jiang L Z, Guo W, et al. The seismic response of high-speed railway bridges subjected to near-fault forward directivity ground motions using a vehicle-track-bridge element[J]. Shock and Vibration, 2014(2):1-17.
    [6] Du X T, Xu Y L, Xia H. Dynamic interaction of bridge-train system under non-uniform seismic ground motion[J]. Earthquake Engineering & Structural Dynamics, 2012, 41(1):139-157.
    [7] Choi E, DesRoches R, Nielson B. Seismic fragility of typical bridges in moderate seismic zones[J]. Engineering Structures, 2004,26(2):187-199.
    [8] Dezfuli F H, Alam M S. Effect of different steel-reinforced elastomeric isolators on the seismic fragility of a highway bridge[J]. Structural Control & Health Monitoring, 2017, 24(2):doi: 10.1002/stc.1866.
    [9] Navarrete B A O, Guerrero J M J, Diaz M J. Influence of RC jacketing on the seismic vulnerability of RC bridges[J]. Engineering Structures, 2016, 123:236-246.
    [10] Taskari O, Sextos A. Multi-angle, multi-damage fragility curves for seismic assessment of bridges[J]. Earthquake Engineering & Structural Dynamics, 2015, 44(13):2281-2301.
    [11] Ramadan O M O, Mehanny S S F, Elhowary H A. Seismic vulnerability of box girder continuous bridges under spatially variable ground motions[J]. Bulletin of Earthquake Engineering, 2015, 13(6):1727-1748.
    [12] 郑凯锋, 陈力波, 庄卫林, 等. 基于概率性地震需求模型的桥梁易损性分析[J]. 工程力学, 2013, 30(5):165-171. Zheng Kaifeng, Chen Libo, Zhuang Weilin, et al. Bridge vulnerability analysis based on probabilistic seismic demand models[J]. Engineering Mechanics, 2013, 30(5):165-171. (in Chinese)
    [13] Cornell C A, Jalayer F, Hamburger R O, et al. Probabilistic basis for 2000 SAC Federal Emergency Management Agency steel moment frame guidelines[J]. Journal of Structural Engineering, 2002, 128(4):526-533.
    [14] Vamvatsikos D, Cornell C A. Incremental dynamic analysis[J]. Earthquake Engineering & Structural Dynamics, 2002, 31(3):491-514.
    [15] Vamvatsikos D, Cornell CA. Developing efficient scalar and vector intensity measures for IDA capacity estimation by incorporating elastic spectral shape information[J]. Earthquake Engineering & Structural Dynamics, 2005, 34(13):1573-1600.
    [16] Hwang H, Jernigan J B, Lin Y W. Evaluation of seismic damage to memphis bridges and highway systems[J]. Journal of Bridge Engineering, 2014, 5(4):322-330.
    [17] Park Y J, Ang A H S. Mechanistic seismic damage model for reinforced concrete[J]. Journal of Structural Engineering, 1985, 4(111):722-739.
    [18] Kowalsky M J. A displacement-based approach for the seismic design of continuous concrete bridges[J]. Earthquake Engineering & Structural Dynamics, 2002, 31(3):719-747.
    [19] 魏标, 戴公连. 非规则梁桥的振型重要性指标研究[J]. 工程力学, 2013, 30(9):194-199. Wei Biao, Dai Gonglian. Importance index for modes of irregular continuous bridges[J]. Engineering Mechanics, 2013, 30(9):194-199. (in Chinese)
    [20] 吴定俊, 石龙, 李奇. 梁轨纵向位移阻力系数双弹簧模型研究[J]. 工程力学, 2015, 32(10):75-81. Wu Dingjun, Shi Long, Li Qi. A double-spring model for longitudinal displacement-resistance relationship of fasteners in rail-bridge interaction analysis[J]. Engineering Mechanics, 2015, 32(10):75-81. (in Chines)
计量
  • 文章访问数:  341
  • HTML全文浏览量:  48
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-30
  • 修回日期:  2017-11-26
  • 刊出日期:  2018-04-24

目录

    /

    返回文章
    返回