桩端岩溶顶板的破坏特征试验与理论计算模型研究

黄明, 付俊杰, 陈福全, 江松

黄明, 付俊杰, 陈福全, 江松. 桩端岩溶顶板的破坏特征试验与理论计算模型研究[J]. 工程力学, 2018, 35(10): 172-182. DOI: 10.6052/j.issn.1000-4750.2017.06.0435
引用本文: 黄明, 付俊杰, 陈福全, 江松. 桩端岩溶顶板的破坏特征试验与理论计算模型研究[J]. 工程力学, 2018, 35(10): 172-182. DOI: 10.6052/j.issn.1000-4750.2017.06.0435
HUANG Ming, FU Jun-jie, CHEN Fu-quan, JIANG Song. THEORETICAL CALCULATION MODEL AND MODEL TEST ON THE FAILURE CHARACTERISTIC OF KARST ROOF UNDER ROCK-SOCKETED PILE[J]. Engineering Mechanics, 2018, 35(10): 172-182. DOI: 10.6052/j.issn.1000-4750.2017.06.0435
Citation: HUANG Ming, FU Jun-jie, CHEN Fu-quan, JIANG Song. THEORETICAL CALCULATION MODEL AND MODEL TEST ON THE FAILURE CHARACTERISTIC OF KARST ROOF UNDER ROCK-SOCKETED PILE[J]. Engineering Mechanics, 2018, 35(10): 172-182. DOI: 10.6052/j.issn.1000-4750.2017.06.0435

桩端岩溶顶板的破坏特征试验与理论计算模型研究

基金项目: 国家自然科学基金项目(41672290);福建省自然科学基金项目(2016J01189)
详细信息
    作者简介:

    付俊杰(1990-),男,河南郑州人,硕士,主要从事岩土与地下工程研究(E-mail:1339578501@qq.com);陈福全(1971-),男,福建龙岩人,教授,博士,主要从事岩土工程方面的教学与研究工作(E-mail:phdchen@fzu.edu.cn);江松(1991-),男,福建福州人,博士生,主要从事岩土与地下工程研究(E-mail:419289622@qq.com).

    通讯作者:

    黄明(1983-),男,江西瑞金人,教授,博士,主要从事岩土与地下工程研究(E-mail:huangming05@163.com).

  • 中图分类号: TU473.1+2

THEORETICAL CALCULATION MODEL AND MODEL TEST ON THE FAILURE CHARACTERISTIC OF KARST ROOF UNDER ROCK-SOCKETED PILE

  • 摘要: 基于分离相似设计方法,开展了顶板厚度和溶洞直径变化下桩端顶板的破坏特征模型试验,并构建了相应的安全厚度理论计算模型。1)溶洞顶板厚度的大小影响了桩基嵌岩端荷载的传递路径,厚度越大传递范围越广,形成的剪切带体积越大。顶板厚度t≤1.0d时(d为桩径)顶板临空面处易发生冲切破坏,此时溶洞顶板的自身稳定性起控制作用,顶板厚度越小,溶洞临空面处脱落体积越小;顶板厚度1.0d< t ≤2.0d时,表现为锥形冲切失稳驱动上部剪切错动的破坏;顶板厚度t >2.0d时,表现为上部剪切错动驱动临空面的锥形冲切失稳,且溶洞直径小于剪切错动体的横向宽度时,剪切破坏最终发生在桩-岩界面的竖向投影范围以内。顶板厚度较小,对应的Q-S曲线为典型的陡降型曲线,而厚度较大时Q-S曲线为典型的缓变型。2)顶板具有一定厚度情况下(t≥2.0d),洞径较小(l≤3.0d)时,桩端剪切变形较为显著,上部剪切错动达到一定程度后,顶板临空面才发生冲切破坏,此时Q-S曲线呈现缓变型趋势;洞径较大时(l >3.0d),顶板临空面处冲切现象较显著,且洞径越大锥形冲切块的体积越大,此时Q-S曲线呈陡降型变化特征。3)以锥形冲切破坏计算模型进行工程设计风险较大,而冲-剪破坏理论模型与顶板岩体强度、完整性、桩径、嵌岩深度、施工方法及工艺等相关,故现场条件下即可计算出顶板的最小安全厚度值。
    Abstract: Based on the isolated similar design method, the model test research on the failure characteristic of karst roof under a rock-socketed pile was carried out with the change of roof thickness and cave diameter, and a formula was also presented. It shows that:1) The thickness of karst roof impacts the load transfer path of the rock-socketed pile, the thicker the roof, the wider the transfer range, and the larger the volume of a shear zone. When the thickness of the roof is no more than the diameter of the pile, punching failure will happen around the free face of the roof, and the stability of the roof around the free face play a vital role. The thinner the roof, the smaller the volume of the tapered block. When the thickness of roof is greater than the diameter of the pile, but littler than two times of the diameter, the upper shear failure happens firstly, and then induces the punching failure around the free face. When the thickness of the roof is greater than two times of the diameter of the pile, the punching failure around the free face happens firstly, and induces the upper shear failure latterly, which will happens within the projection of the pile in the condition that the diameter of the cave is less than the transverse width of the shear zone. The load-settlement curve is of a rapid-falling style with a thinner roof, while the load-settlement curve is of a slow-change style with a thicker roof. 2) The shear deformation of the roof is significant when the diameter of the cave is less than three times of the pile diameter (the thickness of the roof is greater than two times of the pile diameter), the punching failure happens after the upper shear failure of the roof, and the load-settlement curve is of a slow-change style. The greater the diameter of a cave, the larger the volume of the tapered punching block, and the load-settlement curve is of a rapid-falling style when the diameter of the cave is greater than three times of the pile. 3) It is of great risk to calculate the safe thickness of the karst roof under the pile tip using the punching failure formula. However, the punching-shear failure model is providential, and related to the strength of the karst roof, the integrity of rock, the diameter of the pile, rock-socketed depth, the construction method and technologies. This approach can be used to calculate the safe thickness of the cave roof quickly in site.
  • [1] 赵明华, 蒋冲, 曹文贵. 岩溶区嵌岩桩承载力及其下伏溶洞顶板安全厚度的研究[J]. 岩土工程学报, 2007, 29(11):1618-1622. Zhao Minghua, Jiang Chong, Cao Wengui. Study on bearing capacity of rock-socketed pile and safe thickness of cave roofs in karst region[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11):1618-1622. (in Chinese)
    [2] Sharapov R V, Lodigina N D. Calculation of grillage strip foundation in area of karst collapses formation[J]. Applied Mechanics & Materials, 2015, 770:723-728.
    [3] Carter T G, Bruce D A, Wolosick J R, et al. A novel blend of karst grouting and micropile placement techniques for stabilizing difficult foundation conditions in weak vuggy limestone[C]//Proceeding of Grouting 2017. Honolulu, USA:American Society of Civil Engineers, 2017:238-249.
    [4] 柏华军. 考虑溶洞顶板自重时桩端持力岩层安全厚度计算方法[J]. 岩土力学, 2016, 37(10):2945-2952. Bai Huajun. A method for calculating the safety rock thickness of pile bearing strata with considering deadweight of karst cave roof[J]. Rock and Soil Mechanics, 2016, 37(10):2945-2952. (in Chinese)
    [5] 赵明华, 雷勇, 张锐. 岩溶区桩基冲切破坏模式及安全厚度研究[J]. 岩土力学, 2012, 33(2):524-530. Zhao Minghua, Lei Yong, Zhang Rui. Study of punching failure mode and safe thickness of pile foundation in karst region[J]. Rock and Soil Mechanics, 2012, 33(2):524-530. (in Chinese)
    [6] He J, Yu C, Xiao L, et al. Determination of ultimate bearing capacity of pile tip and safety thickness of cave roofs under pile tip in karst area based on upper bound theorem[J]. Journal of Natural Disasters, 2017, 26(2):47-52.
    [7] 邹新军, 唐国东, 赵明华. 串珠状岩溶区桩基沉降计算与稳定分析[J]. 建筑结构, 2013, 43(13):95-98. Zou Xinjun, Tang Guodong, Zhao Minghua. Settlement and stability analysis of pile foundation in string-beaded karst area[J]. Building Structure, 2013, 43(13):95-98. (in Chinese)
    [8] Yi J, He G J, Liu S S, et al. Construction method and numerical analysis on the bearing capacity of the large diameter and abyssal pile located in complex karst area[J]. Advanced Materials Research, 2013, 640(1):688-693.
    [9] Chen Shanxiong, Xu Xichang, Dai Zhangjun, et al. Numerical study on the stress of pile foundation influenced by the beaded karst[C]//Proceeding of 20166th International Conference on Information Engineering for Mechanics and Materials (ICIMM 2016). Hohhot, China, 2016:475-479.
    [10] 杨志坚, 王文进, 康谷贻. 往复荷载作用下预应力高强混凝土管桩延性分析[J]. 工程力学, 2016, 33(增刊l):107-112. Yang Zhijian, Wang Wenjin, Kang Guyi. Analysis on the ductility of prestressed high strength concrete pile under cyclic loading[J]. Engineering Mechanics, 2016, 33(Suppl 1):107-112. (in Chinese)
    [11] Ibrahim A, Ashour M, Altahrany A. Pile response under axial tension forces in sandy soils[J]. Journal of Bridge Engineering, 2017, 22(11):04017100-1-04017100-15.
    [12] 梁鑫, 程谦恭, 陈建明, 等. 采空区上方高速铁路桥梁群桩基础模型试验研究[J]. 岩土力学, 2015, 36(7):1865-1876. Liang Xin, Cheng Qiangong, Chen Jianming, et al. Model test on pile group foundation of a high-speed railway bridge above a goaf[J]. Rock and Soil Mechanics, 2015, 36(7):1865-1876. (in Chinese)
    [13] 黄生根, 梅世龙, 龚维明. 南盘江特大桥岩溶桩基承载特性的试验研究[J]. 岩石力学与工程学报, 2004, 23(5):809-813. Huang Shenggen, Mei Shilong, Gong Weiming. Testing study on bearing behavior of piles for Nanpan River great bridge in karst area[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(5):809-813. (in Chinese)
    [14] 闫澍旺, 霍知亮, 楚剑, 等. 黏土中负压桶形基础下沉与承载特性试验及有限元分析研究[J]. 工程力学, 2016, 33(1):122-132. Yan Shuwang, Huo Zhiliang, Chu Jian, et al. Test and FEA of installation and axial behavior of suction caisson in clay[J]. Engineering Mechanics, 2016, 33(1):122-132. (in Chinese)
    [15] 张鑫磊, 王志华, 许振巍, 等. 土体液化大位移条件下群桩动力反应振动台模型试验[J]. 工程力学, 2016, 33(5):150-156. Zhang Xinlei, Wang Zhihua, Xu Zhenwei, et al. Shaking table model tests on dynamic response of pile groups under liquefaction-induced large ground displacement[J]. Engineering Mechanics, 2016, 33(5):150-156. (in Chinese)
    [16] 张慧乐, 马凛, 张智浩, 等. 岩溶区嵌岩桩承载特性影响因素试验研究[J]. 岩土力学, 2013, 34(1):92-100. Zhang Huile, Ma Lin, Zhang Zhihao, et al. Test research on factors influencing bearing capacity of rock-socketed piles in karst area[J]. Rock and Soil Mechanics, 2013, 34(1):92-100. (in Chinese)
    [17] 王志佳, 张建经, 付晓, 等. 模型试验的分离相似设计方法——以锚索格构加固边坡模型试验为例[J]. 岩土力学, 2016, 37(9):2617-2623. Wang Zhijia, Zhang Jianjing, Fu Xiao, et al. Respective similitude theory for scale model test——in case of shaking table test for slope-anchor rod-lattice beam system[J]. Rock and Soil Mechanics, 2016, 37(9):2617-2623. (in Chinese)
    [18] 王志佳. 岩土工程振动台试验理论及在地下管线动力响应研究中的应用[D]. 成都:西南交通大学, 2016. Wang Zhijia. Theory of geotechnical shaking table test and its application in study of dynamic response of buried pipeline[D]. Chengdu:Southwest Jiaotong University, 2016. (in Chinese)
    [19] Kana D D, Boyce L, Blaney G W. Development of a scale model for the dynamic interaction of a pile in clay[J]. Journal of Energy Resources Technology, 1986, 108(3):254-261.
    [20] Iai S. Similitude for shaking table tests on soil-structurefluid model in 1g gravitational field[J]. Soils and Foundations, 1989, 29(1):105-118.
    [21] Bathurst R J, Zarnani S, Gaskin A. Shaking table testing of geofoam seismic buffers[J]. Soil Dynamics and Earthquake Engineering, 2007, 27(4):324-332.
    [22] Lin M L W K L. Seismic slope behavior in a large-scale shaking table model test[J]. Engineering Geology, 2006, 86(2):118-133.
    [23] 张慧乐, 张智浩, 王述红, 等. 岩溶区嵌岩桩的试验研究与分析[J]. 土木工程学报, 2013, 46(1):92-103. Zhang Huile, Zhang Zhihao, Wang Shuhong, et al. Experimental study and analysis of rock-socketed pile in karst area[J]. China Civil Engineering Journal, 2013, 46(1):92-103. (in Chinese)
    [24] 王向军. 嵌岩桩承载变形特性的数值分析[J]. 岩土力学, 2015, 36(增刊1):585-591. Wang Xiangjun. Numerical analysis of bearing capacity and deformation about rock-socketed pile[J]. Rock and Soil Mechanics, 2015, 36(Suppl 1):585-591. (in Chinese)
    [25] 邢皓枫, 孟明辉, 罗勇, 等. 软岩嵌岩桩荷载传递机理及其破坏特征[J]. 岩土工程学报, 2011, 33(增刊2):355-361. Xing Haofeng, Meng Minghui, Luo Yong, et al. Load transfer mechanism and failure characteristics of piles embedded in soft rock[J]. Chinese Journal Geotechnical Engineering, 2011, 33(Suppl 2):355-361. (in Chinese)
    [26] TB 10002.5-2005, 铁路桥涵地基和基础设计规范[S]. 北京:人民铁道出版社, 2005. TB 10002.5-2005, code for design on subsoil and foundation of railway bridge and culvert[S]. Beijing:China Railway Publishing House, 2005. (in Chinese)
    [27] 张四平. 嵌岩桩传荷性能及破坏机理的试验研究[J]. 重庆建筑工程学院学报, 1990, 12(2):1-9. Zhang Siping. An experimental study on the load transfer capacity and failure mechanism of rock-socketed pile[J]. Journal of Chongqing Jianzhu University, 1990, 12(2):1-9. (in Chinese)
    [28] 水利水电科学研究院. 岩石力学参数手册[M]. 北京:水利电力出版社, 1991. China Institute of Water Resources and Hydropower Research. Handbook of rock mechanics parameters[M]. Beijing:Water Resources and Electric Power Press, 1991. (in Chinese)
  • 期刊类型引用(9)

    1. 彭敏艺,袁杰,单毅,童华炜,崔杰. 岩溶区嵌岩桩桩端承载力影响因素室内缩尺模型试验及数值模拟分析. 广东土木与建筑. 2025(03): 48-52 . 百度学术
    2. 王新泉,刘臣,田永乐,陈海涛. 岩溶区桩基单桩承载性能研究进展. 佳木斯大学学报(自然科学版). 2025(02): 100-104 . 百度学术
    3. 王新泉,陈海涛,胡海波,刁红国,崔允亮,李枭. 岩溶桩基下伏顶板承载性能研究进展. 广东工业大学学报. 2025(02): 112-120 . 百度学术
    4. 郭建民,杨春山,黄钺,张松涛,曾炯坤. 考虑裂隙影响的桩端岩溶顶板破坏形态与安全厚度. 地下空间与工程学报. 2024(04): 1382-1388 . 百度学术
    5. 李子丰,张永杰,黄金鑫,罗志敏. 考虑溶洞空间形态的岩溶路基顶板稳定性分析. 公路与汽运. 2023(03): 66-72 . 百度学术
    6. 江杰,赖增任,欧孝夺,王智,杨迪. 多向荷载作用下岩溶区嵌岩桩嵌岩深度计算方法. 铁道建筑. 2020(06): 96-100+104 . 百度学术
    7. 李天雨,范秋雁,韩伟,梁家珲. 覆盖岩溶临空面对水平承载桩嵌固端承载力的影响试验研究. 工程力学. 2020(10): 192-199 . 本站查看
    8. 曹贤发,刘之葵,李海玲. 岩溶区建筑场地桩基平均入岩高程预测. 水文地质工程地质. 2019(04): 119-125 . 百度学术
    9. 汪婧. 基于上限分析原理的岩溶桩基破坏模式与极限承载力计算. 铁道科学与工程学报. 2019(09): 2207-2214 . 百度学术

    其他类型引用(8)

计量
  • 文章访问数:  411
  • HTML全文浏览量:  37
  • PDF下载量:  59
  • 被引次数: 17
出版历程
  • 收稿日期:  2017-06-05
  • 修回日期:  2017-11-30
  • 刊出日期:  2018-10-28

目录

    /

    返回文章
    返回