低温环境下桥梁钢Q345qD疲劳裂纹扩展行为研究

廖小伟, 王元清, 石永久, 陈宏

廖小伟, 王元清, 石永久, 陈宏. 低温环境下桥梁钢Q345qD疲劳裂纹扩展行为研究[J]. 工程力学, 2018, 35(10): 85-91. DOI: 10.6052/j.issn.1000-4750.2017.06.0483
引用本文: 廖小伟, 王元清, 石永久, 陈宏. 低温环境下桥梁钢Q345qD疲劳裂纹扩展行为研究[J]. 工程力学, 2018, 35(10): 85-91. DOI: 10.6052/j.issn.1000-4750.2017.06.0483
LIAO Xiao-wei, WANG Yuan-qing, SHI Yong-jiu, CHEN Hong. EXPERIMENTAL STUDY ON THE FATIGUE CRACK GROWTH BEHAVIOR OF BRIDGE STEEL Q345qD AT LOW TEMPERATURES[J]. Engineering Mechanics, 2018, 35(10): 85-91. DOI: 10.6052/j.issn.1000-4750.2017.06.0483
Citation: LIAO Xiao-wei, WANG Yuan-qing, SHI Yong-jiu, CHEN Hong. EXPERIMENTAL STUDY ON THE FATIGUE CRACK GROWTH BEHAVIOR OF BRIDGE STEEL Q345qD AT LOW TEMPERATURES[J]. Engineering Mechanics, 2018, 35(10): 85-91. DOI: 10.6052/j.issn.1000-4750.2017.06.0483

低温环境下桥梁钢Q345qD疲劳裂纹扩展行为研究

基金项目: 国家自然科学基金项目(51378289,51678339)
详细信息
    作者简介:

    廖小伟(1985-),男,湖北人,博士生,主要从事钢结构疲劳与断裂研究(E-mail:liaoxw13@mails.tsinghua.edu.cn);石永久(1962-),男,黑龙江人,教授,博士,博导,主要从事钢结构研究(E-mail:shiyj@mail.tsinghua.edu.cn);陈宏(1963-),男,江苏人,教授级高工,博士,主要从事钢结构设计与研究(E-mail:chh13@tsinghua.org.cn).

    通讯作者:

    王元清(1963-),男,安徽人,教授,博士,博导,主要从事钢结构研究(E-mail:wang-yq@mail.tsinghua.edu.cn).

  • 中图分类号: U448.36

EXPERIMENTAL STUDY ON THE FATIGUE CRACK GROWTH BEHAVIOR OF BRIDGE STEEL Q345qD AT LOW TEMPERATURES

  • 摘要: 为了明确在寒冷地区服役桥梁钢的疲劳裂纹扩展行为,以16 mm厚桥梁钢Q345qD为研究对象,完成了室温和低温下的夏比冲击韧性试验、疲劳裂纹扩展速率试验和疲劳裂纹扩展门槛值试验。结果表明,夏比冲击功和试样断口剪切断面率随温度的降低而减少;在应力比0.1、0.2和0.5条件下,疲劳裂纹扩展速率均随温度降低而变缓,该桥梁钢的疲劳韧-脆转变温度点在-60℃以下;在室温~-60℃,其裂纹扩展速率均对应力比的变化不敏感;应力比0.1条件下的疲劳裂纹扩展门槛值随温度的降低有略微增大的趋势。该批次桥梁钢表现出了良好的抵抗低温疲劳裂纹扩展性能,防止低温脆性破坏成为疲劳设计的重点;试验数据能为钢结构桥梁的进一步抗低温疲劳和防低温冷脆断裂设计提供参考。
    Abstract: To explore the fatigue crack growth behavior of bridge steel used in cold regions, a series of experimental studies, including Charpy impact test, fatigue crack growth rate test and fatigue crack growth threshold test, were carried out for bridge steel Q345qD with a plate thickness of 16 mm at room and low temperatures. The results show that the impact energy and percentage shear area reduce as the temperature declines. At stress ratios of 0.1, 0.2 and 0.5, the fatigue crack growth rate becomes lower with the declining temperatures, and the fatigue ductile-brittle transition temperature of the bridge steel is below -60℃. The fatigue crack growth rate is insensitive to the variation of the stress ratio at both room temperature and low temperatures. At the stress ratio of 0.1, the fatigue crack growth threshold increases with the reduced temperature. It can be concluded that this batch of bridge steel exhibits good resistant performance to fatigue crack growth at low temperatures, making the prevention of low-temperature brittle fracture become the first consideration. The experimental data obtained can be employed for further study on the fatigue & fracture resistant design and fatigue residual life prediction of fatigue detail for steel bridges in cold and extremely cold regions.
  • [1] 王元清. 钢结构在低温下脆性破坏研究概述[J]. 钢结构, 1994, 9(4):217-221. Wang Yuanqing. Survey of investigation about brittle fracture of steel structure under low temperature[J]. Steel Construction, 1994, 9(4):217-221. (in Chinese)
    [2] 张玉玲, 潘际炎. 低温对钢材及其构件性能影响研究综述[J]. 中国铁道科学, 2003, 24(2):89-96. Zhang Yuling, Pan Jiyan. Study on performance of steel and the components under low temperature[J]. China Railway Science, 2003, 24(2):89-96. (in Chinese)
    [3] 任伟新. 14MnNb新桥钢疲劳裂纹扩展速率试验研究[J]. 长沙铁道学院学报, 1994, 12(3):57-64. Ren Weixin. Experiment on fatigue crack growth rate of 14MnNb new type bridge steel[J]. Journal of Changsha Railway University, 1994, 12(3):57-64. (in Chinese)
    [4] 刘艳萍, 陈传尧, 李建兵, 等. 14MnNbq焊接桥梁钢的疲劳裂纹扩展行为研究[J]. 工程力学, 2008, 25(4):209-212. Liu Yanping, Chen Chuanyao, Li Jianbing, et al. Fatigue crack growth behavior for the weld heat-affected zone of 14MnNbq bridges steel[J]. Engineering Mechanics, 2008, 25(4):209-212. (in Chinese)
    [5] 王春生, 段兰, 郑丽, 等. 桥梁高性能钢HPS 485W疲劳裂纹扩展速率试验研究[J]. 工程力学, 2013, 30(6):212-216. Wang Chunsheng, Duan Lan, Zheng Li, et al. Fatigue crack growth rate tests of high performance steel HPS 485W for bridges[J]. Engineering Mechanics, 2013, 30(6):212-216. (in Chinese)
    [6] 宗亮, 施刚, 王元清, 等. WNQ570桥梁钢及其对接焊缝疲劳裂纹扩展性能试验研究[J]. 工程力学, 2016, 33(8):45-51. Zong Liang, Shi Gang, Wang Yuanqing, et al. Experimental study on fatigue crack behavior of bridge steel WNQ570 base metal and butt weld[J]. Engineering Mechanics, 2016, 33(8):45-51. (in Chinese)
    [7] Zong L, Shi G, Wang Y Q. Experimental investigation on fatigue crack behavior of bridge steel Q345qD base metal and butt weld[J]. Materials and Design, 2015, 66:196-208.
    [8] 张玉玲. 低温环境下铁路钢桥疲劳断裂性能研究[J]. 中国铁道科学, 2008, 29(1):22-25. Zhang Yuling. Research on the fatigue and fracture performance of railway steel bridge under low temperature[J]. China Railway Science, 2008, 29(1):22-25. (in Chinese)
    [9] Walters C L, Alvaro A, Maljaars J. The effect of low temperatures on the fatigue crack growth of S460 structural steel[J]. International Journal of Fatigue, 2016, 82:110-118.
    [10] Lü B T, Zheng X L. A model for predicting fatigue crack growth behavior of a low alloy steel at low temperature[J]. Engineering Fracture Mechanics, 1992, 42(6):1001-1009.
    [11] 方华灿, 段梦兰. 海洋平台用钢A537与温度相关的疲劳裂纹扩展[J]. 石油学报, 1995, 16(3):129-133. Fang Huacan, Duan Menglan. Temperature related crack propagation in offshore platform steel A537[J]. Acta Petrolei Sinica, 1995, 16(3):129-133. (in Chinese)
    [12] Fassina P, Brunella M F, Lazzari L, et al. Effect of hydrogen and low temperature on fatigue crack growth of pipeline steels[J]. Engineering Fracture Mechanics, 2013, 103:10-25.
    [13] Kitsunai Y, Yonshihisa E. Fatigue crack growth behavior in welded joints of high-strength steel under low temperatures[J]. JSME International Journal, 1991, 34(3):339-346.
    [14] 吕宝桐, 郑修麟. 低温下LY12CZ铝合金的疲劳裂纹扩展[J]. 宇航学报, 1993, 1:76-80. Lü Baotong, Zheng Xiulin. Fatigue crack growth of LY12CZ aluminum alloy at low temperatures[J]. Journal of Astronautics, 1993, 1:76-80. (in Chinese)
    [15] 刘建新, 涂小慧, 鄢文彬, 等. 两种低合金高强度钢的低温疲劳裂纹扩展行为研究[J]. 机械工程材料, 1991, 1:47-51. Liu Jianxin, Tu Xiaohui, Yan Wenbin, et al. Fatigue cracking behavior of two HSLA steels at low temperature[J]. Materials for Mechanical Engineering, 1991, 1:47-51. (in Chinese)
    [16] 周德辉, 郭爱民. 我国铁路桥梁用钢的现状与发展[J]. 钢结构, 2009, 24(9):1-5, 56. Zhou Dehui, Guo Aimin. State and development using steel in railway bridge of China[J]. Steel Construction, 2009, 24(9):1-5, 56. (in Chinese)
    [17] GB/T 714-2008, 桥梁用结构钢[S]. 北京:中国标准出版社, 2008. GB/T 714-2008, Structural steel for bridge[S]. Beijing:Standards Press of China, 2008. (in Chinese)
    [18] GB/T 6398-2000, 金属材料疲劳裂纹扩展速率试验方法[S]. 北京:中国标准出版社, 2000. GB/T 6398-2000, Standard test method for fatigue crack growth rates of metallic materials[S]. Beijing:Standards Press of China, 2000. (in Chinese)
    [19] GB/T 229-2007, 金属材料夏比摆锤冲击试验方法[S]. 北京:中国标准出版社, 2007. GB/T 229-2007, Metallic materials-Charpy pendulum impact test method[S]. Beijing:Standards Press of China, 2007. (in Chinese)
    [20] Stephens R I, Chung J H, Glinka G. Low temperature fatigue behavior of steels -a review[R]. Society for Automotive Engineering, Technical Paper 790517, 1979.
    [21] Moody N R, Gerberich W W. Fatigue crack propagation in iron and two iron binary alloys at low temperatures[J]. Materials Science and Engineering, 1979, 41:271-280.
    [22] Verkin B, Grinberg N, Serdyuk V, et al. Low temperature fatigue fracture of metals and alloys[J]. Materials Science and Engineering, 1983, 58:145-168.
    [23] Tobler R L, Cheng Y W. Midrange fatigue crack growth data correlations for structural alloys at room and cryogenic temperatures[R]. ASTM STP 857. Philadelphia, PA, American Society for Testings and Materials, 1985:3-30.
    [24] Lü B T, Zheng X L. Predicting fatigue crack growth rates and thresholds at low temperatures[J]. Materials Science and Engineering A, 1991, 148:179-188.
    [25] 赵建平, 张秀敏, 沈士明.材料韧脆转变温度数据处理方法探讨[J]. 油化工设备, 2004, 33(4):29-32. Zhao Jianping, Zhang Xiumin, Shen Shiming. On the method of data processing for ductile-brittle transition temperature[J]. Petro-Chemical Equipment, 2004, 33(4):29-32. (in Chinese)
    [26] 王元清, 廖小伟, 张子富, 等. 输电线铁塔钢材的低温力学和冲击韧性试验[J]. 哈尔滨工业大学学报, 2015, 47(12):70-74. Wang Yuanqing, Liao Xiaowei, Zhang Zifu, et al. Experimental study on mechanical properties and impact toughness of steel for transmission line towers at low temperatures[J]. Journal of Harbin Institute of Technology, 2015, 47(12):70-74. (in Chinese)
    [27] de Jesus A M P, Matos R, Fontoura B F C, et al. A comparison of the fatigue behavior between S355 and S690 steel grades[J]. Journal of Constructional Steel Research, 2012, 79:140-150.
    [28] Hobbacher A F. Recommendations for fatigue design of welded joints and components[R]. Paris:International Institute of Welding, 2008.
    [29] Liaw P K, Logsdon W A. Fatigue crack growth threshold at cryogenic temperatures:A review[J]. Engineering Fracture Mechanics, 1985, 22(4):585-594.
  • 期刊类型引用(16)

    1. 肖林发,林恒,王永祥,陈华鹏. Q960D高性能钢疲劳裂纹扩展影响因素分析. 材料科学与工程学报. 2024(03): 394-404 . 百度学术
    2. 杨育梅,王正鹏,雷芳明. 超导带材涂层结构边缘脱粘后的电磁应力分析. 工程力学. 2024(08): 250-256 . 本站查看
    3. 黄家能,詹光曹,王义惠,许智平,周汝锦,朱丽娜,戴品强. Nb微合金化Q345qD钢的连续冷却转变行为. 福建冶金. 2024(05): 36-39 . 百度学术
    4. 李武安,常义,孙小川. 断裂力学在桥梁领域的应用与发展. 科技创新与应用. 2024(34): 101-106 . 百度学术
    5. 虞庐松,王庚,王力,周晓夫,顾皓玮,李子奇. 高寒环境温度下钢管混凝土柱抗震性能试验研究. 地震工程学报. 2024(06): 1251-1258 . 百度学术
    6. 黄家能,詹光曹,王义惠,许智平,周汝锦,朱丽娜,戴品强. 铌微合金化Q345qD钢的热变形行为及热加工图. 江西冶金. 2024(06): 449-455 . 百度学术
    7. 杨育梅,马蓉蓉,雷芳明. 临界电流密度的非均匀性对超导薄板电磁力学特性的影响. 工程力学. 2023(09): 247-256 . 本站查看
    8. 周如江,于培师,吴连生,韦朋余,赵宇翔,赵军华. 低温环境下TC4ELI钛合金三维疲劳裂纹扩展模型. 机械工程材料. 2023(12): 87-92 . 百度学术
    9. 黄俊,伍曾,张荣茂,马薇. 60Si2Mn弹簧钢疲劳裂纹扩展规律研究. 铸造技术. 2022(08): 690-693 . 百度学术
    10. 郑杰瑜,王艺陶,刘俊杰,胡嘉骏,吴剑国,廖小伟. 焊接节点低温疲劳试验与低温主S-N曲线的构建. 海洋工程. 2021(06): 126-135 . 百度学术
    11. 王元清,顾浩洋,廖小伟. 钢结构角焊缝低温抗剪疲劳性能的试验研究. 工程力学. 2020(01): 73-79+134 . 本站查看
    12. 王天鹏,张建仁,肖宏彬. 低温环境下桥梁用结构钢疲劳寿命估算方法. 自然灾害学报. 2020(01): 64-71 . 百度学术
    13. 王珂,秦闯,崔彭飞,张剑,李永正. 钛合金室温与低温疲劳裂纹扩展速率试验研究. 舰船科学技术. 2020(11): 30-33+49 . 百度学术
    14. 潘远洲,何天虎,辛灿杰,关明智. 高温超导带材低/变温疲劳性能测试系统的研制. 工程力学. 2020(11): 248-256 . 本站查看
    15. 童乐为,任珍珍,景爽,牛立超. 高强度结构钢系列的疲劳裂纹扩展速率试验研究. 工程力学. 2020(12): 191-201+212 . 本站查看
    16. 甘宏运,何钢. 桥梁施工裂缝成因及处理措施研究. 交通世界. 2019(28): 86-87+126 . 百度学术

    其他类型引用(11)

计量
  • 文章访问数:  542
  • HTML全文浏览量:  68
  • PDF下载量:  132
  • 被引次数: 27
出版历程
  • 收稿日期:  2017-06-20
  • 修回日期:  2017-08-28
  • 刊出日期:  2018-10-28

目录

    /

    返回文章
    返回