[1] |
王元清. 钢结构在低温下脆性破坏研究概述[J]. 钢结构, 1994, 9(4):217-221. Wang Yuanqing. Survey of investigation about brittle fracture of steel structure under low temperature[J]. Steel Construction, 1994, 9(4):217-221. (in Chinese)
|
[2] |
张玉玲, 潘际炎. 低温对钢材及其构件性能影响研究综述[J]. 中国铁道科学, 2003, 24(2):89-96. Zhang Yuling, Pan Jiyan. Study on performance of steel and the components under low temperature[J]. China Railway Science, 2003, 24(2):89-96. (in Chinese)
|
[3] |
任伟新. 14MnNb新桥钢疲劳裂纹扩展速率试验研究[J]. 长沙铁道学院学报, 1994, 12(3):57-64. Ren Weixin. Experiment on fatigue crack growth rate of 14MnNb new type bridge steel[J]. Journal of Changsha Railway University, 1994, 12(3):57-64. (in Chinese)
|
[4] |
刘艳萍, 陈传尧, 李建兵, 等. 14MnNbq焊接桥梁钢的疲劳裂纹扩展行为研究[J]. 工程力学, 2008, 25(4):209-212. Liu Yanping, Chen Chuanyao, Li Jianbing, et al. Fatigue crack growth behavior for the weld heat-affected zone of 14MnNbq bridges steel[J]. Engineering Mechanics, 2008, 25(4):209-212. (in Chinese)
|
[5] |
王春生, 段兰, 郑丽, 等. 桥梁高性能钢HPS 485W疲劳裂纹扩展速率试验研究[J]. 工程力学, 2013, 30(6):212-216. Wang Chunsheng, Duan Lan, Zheng Li, et al. Fatigue crack growth rate tests of high performance steel HPS 485W for bridges[J]. Engineering Mechanics, 2013, 30(6):212-216. (in Chinese)
|
[6] |
宗亮, 施刚, 王元清, 等. WNQ570桥梁钢及其对接焊缝疲劳裂纹扩展性能试验研究[J]. 工程力学, 2016, 33(8):45-51. Zong Liang, Shi Gang, Wang Yuanqing, et al. Experimental study on fatigue crack behavior of bridge steel WNQ570 base metal and butt weld[J]. Engineering Mechanics, 2016, 33(8):45-51. (in Chinese)
|
[7] |
Zong L, Shi G, Wang Y Q. Experimental investigation on fatigue crack behavior of bridge steel Q345qD base metal and butt weld[J]. Materials and Design, 2015, 66:196-208.
|
[8] |
张玉玲. 低温环境下铁路钢桥疲劳断裂性能研究[J]. 中国铁道科学, 2008, 29(1):22-25. Zhang Yuling. Research on the fatigue and fracture performance of railway steel bridge under low temperature[J]. China Railway Science, 2008, 29(1):22-25. (in Chinese)
|
[9] |
Walters C L, Alvaro A, Maljaars J. The effect of low temperatures on the fatigue crack growth of S460 structural steel[J]. International Journal of Fatigue, 2016, 82:110-118.
|
[10] |
Lü B T, Zheng X L. A model for predicting fatigue crack growth behavior of a low alloy steel at low temperature[J]. Engineering Fracture Mechanics, 1992, 42(6):1001-1009.
|
[11] |
方华灿, 段梦兰. 海洋平台用钢A537与温度相关的疲劳裂纹扩展[J]. 石油学报, 1995, 16(3):129-133. Fang Huacan, Duan Menglan. Temperature related crack propagation in offshore platform steel A537[J]. Acta Petrolei Sinica, 1995, 16(3):129-133. (in Chinese)
|
[12] |
Fassina P, Brunella M F, Lazzari L, et al. Effect of hydrogen and low temperature on fatigue crack growth of pipeline steels[J]. Engineering Fracture Mechanics, 2013, 103:10-25.
|
[13] |
Kitsunai Y, Yonshihisa E. Fatigue crack growth behavior in welded joints of high-strength steel under low temperatures[J]. JSME International Journal, 1991, 34(3):339-346.
|
[14] |
吕宝桐, 郑修麟. 低温下LY12CZ铝合金的疲劳裂纹扩展[J]. 宇航学报, 1993, 1:76-80. Lü Baotong, Zheng Xiulin. Fatigue crack growth of LY12CZ aluminum alloy at low temperatures[J]. Journal of Astronautics, 1993, 1:76-80. (in Chinese)
|
[15] |
刘建新, 涂小慧, 鄢文彬, 等. 两种低合金高强度钢的低温疲劳裂纹扩展行为研究[J]. 机械工程材料, 1991, 1:47-51. Liu Jianxin, Tu Xiaohui, Yan Wenbin, et al. Fatigue cracking behavior of two HSLA steels at low temperature[J]. Materials for Mechanical Engineering, 1991, 1:47-51. (in Chinese)
|
[16] |
周德辉, 郭爱民. 我国铁路桥梁用钢的现状与发展[J]. 钢结构, 2009, 24(9):1-5, 56. Zhou Dehui, Guo Aimin. State and development using steel in railway bridge of China[J]. Steel Construction, 2009, 24(9):1-5, 56. (in Chinese)
|
[17] |
GB/T 714-2008, 桥梁用结构钢[S]. 北京:中国标准出版社, 2008. GB/T 714-2008, Structural steel for bridge[S]. Beijing:Standards Press of China, 2008. (in Chinese)
|
[18] |
GB/T 6398-2000, 金属材料疲劳裂纹扩展速率试验方法[S]. 北京:中国标准出版社, 2000. GB/T 6398-2000, Standard test method for fatigue crack growth rates of metallic materials[S]. Beijing:Standards Press of China, 2000. (in Chinese)
|
[19] |
GB/T 229-2007, 金属材料夏比摆锤冲击试验方法[S]. 北京:中国标准出版社, 2007. GB/T 229-2007, Metallic materials-Charpy pendulum impact test method[S]. Beijing:Standards Press of China, 2007. (in Chinese)
|
[20] |
Stephens R I, Chung J H, Glinka G. Low temperature fatigue behavior of steels -a review[R]. Society for Automotive Engineering, Technical Paper 790517, 1979.
|
[21] |
Moody N R, Gerberich W W. Fatigue crack propagation in iron and two iron binary alloys at low temperatures[J]. Materials Science and Engineering, 1979, 41:271-280.
|
[22] |
Verkin B, Grinberg N, Serdyuk V, et al. Low temperature fatigue fracture of metals and alloys[J]. Materials Science and Engineering, 1983, 58:145-168.
|
[23] |
Tobler R L, Cheng Y W. Midrange fatigue crack growth data correlations for structural alloys at room and cryogenic temperatures[R]. ASTM STP 857. Philadelphia, PA, American Society for Testings and Materials, 1985:3-30.
|
[24] |
Lü B T, Zheng X L. Predicting fatigue crack growth rates and thresholds at low temperatures[J]. Materials Science and Engineering A, 1991, 148:179-188.
|
[25] |
赵建平, 张秀敏, 沈士明.材料韧脆转变温度数据处理方法探讨[J]. 油化工设备, 2004, 33(4):29-32. Zhao Jianping, Zhang Xiumin, Shen Shiming. On the method of data processing for ductile-brittle transition temperature[J]. Petro-Chemical Equipment, 2004, 33(4):29-32. (in Chinese)
|
[26] |
王元清, 廖小伟, 张子富, 等. 输电线铁塔钢材的低温力学和冲击韧性试验[J]. 哈尔滨工业大学学报, 2015, 47(12):70-74. Wang Yuanqing, Liao Xiaowei, Zhang Zifu, et al. Experimental study on mechanical properties and impact toughness of steel for transmission line towers at low temperatures[J]. Journal of Harbin Institute of Technology, 2015, 47(12):70-74. (in Chinese)
|
[27] |
de Jesus A M P, Matos R, Fontoura B F C, et al. A comparison of the fatigue behavior between S355 and S690 steel grades[J]. Journal of Constructional Steel Research, 2012, 79:140-150.
|
[28] |
Hobbacher A F. Recommendations for fatigue design of welded joints and components[R]. Paris:International Institute of Welding, 2008.
|
[29] |
Liaw P K, Logsdon W A. Fatigue crack growth threshold at cryogenic temperatures:A review[J]. Engineering Fracture Mechanics, 1985, 22(4):585-594.
|