基于改进响应面法的公路简支梁桥地震易损性分析

陈力波, 黄才贵, 谷音

陈力波, 黄才贵, 谷音. 基于改进响应面法的公路简支梁桥地震易损性分析[J]. 工程力学, 2018, 35(4): 208-218. DOI: 10.6052/j.issn.1000-4750.2017.06.0512
引用本文: 陈力波, 黄才贵, 谷音. 基于改进响应面法的公路简支梁桥地震易损性分析[J]. 工程力学, 2018, 35(4): 208-218. DOI: 10.6052/j.issn.1000-4750.2017.06.0512
CHEN Li-bo, HUANG Cai-gui, GU Yin. SEISMIC VULNERABILITY ANALYSIS OF SIMPLY SUPPORTED HIGHWAY BRIDGES BASED ON AN IMPROVED RESPONSE SURFACE METHOD[J]. Engineering Mechanics, 2018, 35(4): 208-218. DOI: 10.6052/j.issn.1000-4750.2017.06.0512
Citation: CHEN Li-bo, HUANG Cai-gui, GU Yin. SEISMIC VULNERABILITY ANALYSIS OF SIMPLY SUPPORTED HIGHWAY BRIDGES BASED ON AN IMPROVED RESPONSE SURFACE METHOD[J]. Engineering Mechanics, 2018, 35(4): 208-218. DOI: 10.6052/j.issn.1000-4750.2017.06.0512

基于改进响应面法的公路简支梁桥地震易损性分析

基金项目: 国家自然科学基金项目(90715035);中国博士后科学基金项目(2014M561855)
详细信息
    作者简介:

    黄才贵(1993-),男,福建人,硕士生,主要从事桥梁结构抗震研究(E-mail:1046571314@qq.com);谷音(1976-),女,福建人,教授,博士,主要从事大型结构抗震理论及应用研究(E-mail:cinoa@fzu.edu.cn).

    通讯作者:

    陈力波(1984-),男,江苏人,助理研究员,博士,主要从事桥梁结构抗震研究(E-mail:lbchen@fzu.edu.cn).

  • 中图分类号: TU315.7;U448.14

SEISMIC VULNERABILITY ANALYSIS OF SIMPLY SUPPORTED HIGHWAY BRIDGES BASED ON AN IMPROVED RESPONSE SURFACE METHOD

  • 摘要: 针对典型公路简支梁桥提出了一种基于改进响应面方法的易损性模型建构流程。在充分考虑结构和材料等桥梁参数不确定性基础上,基于Plackett-Burman设计方法生成一系列试验样本。采用OpenSees软件进行非线性动力时程分析,比较输入参数对地震响应的贡献,筛选出影响桥梁地震响应的显著性参数;进一步针对显著性参数进行中心复合设计并设计出一系列桥梁样本,基于非线性时程分析结果,建立桥梁各构件在不同的地震动强度下的响应面模型,并采用蒙特卡罗抽样方法计算得到桥梁构件的易损性曲线。假定简支梁桥系统为串联系统,计算生成全桥的易损性曲线。针对相同的桥梁样本,以非线性增量动力分析法生成的易损性曲线为基准,对传统响应面法与改进响应面法计算得到的易损性结果进行比较。结果表明:改进的响应面方程可以高效地替代复杂的非线性时程分析,提高了地震易损性分析的计算效率;构建的易损性曲线能够在较大的地震动强度范围内确定桥梁的损伤构件,帮助桥梁管理部门制定相应的震后加固优先级决策,具有一定的工程应用价值。
    Abstract: A new procedure is proposed to derive the analytical fragility models of simply supported highway bridges based on an improved response-surface method. By considering of the uncertainties in the structural and material properties of the bridges, the bridge samples were obtained by Plackett-Burman design method. From the nonlinear time history analysis through the OpenSees software, several parameters that affect the seismic response of the bridge significantly were identified. From the bridge samples obtained by using the central composite design (CCD) method with the chosen optimal parameters focused on, response surface models under different PGA levels were established from the finite element models with respect to each component's response. The simply supported bridge system was assumed to be a series system and the fragility curve was obtained by Monte Carlo simulation method. From the same bridge samples, fragility curves generated by means of incremental dynamic analysis were used as a benchmark. The results of the traditional response surface method and the improved response surface method were compared to each other. It is found that the improved response surface function could efficiently replace the complex nonlinear time history analysis and improve the efficiency of the fragility analysis. These resulting fragility curves will assist the users to identify the vulnerable bridge components over a large seismic intensity range and aid the bridge management decision-making process to prioritize the seismic strengthening repairs. Therefore, it is comparatively valuable as a new procedure in relevant civil engineering applications.
  • [1] Singhal A, Kiremidjian A S. Method for probabilistic evaluation of seismic structural damage[J]. Structural Engineering, 1996, 122(12):1459-1467.
    [2] Dutta A, Mander J B. Seismic fragility analysis of highway bridges[C]//Proceedings of the INCEDEMCEER Center-to-Center Project Workshop on Earthquake Engineering Frontiers in Transportation Systems, Buffalo, New York, 1998:22-23.
    [3] Osaki T, Takada T. Seismic fragility assessment based on Bayesian updating[C]//Pestana J M. Proceedings of the 9th International Conference on Applications of Statistics and Probability in Civil Engineering. Buffalo, New York, Ios Pr Inc Press, 2003:185-189.
    [4] Mangalathu S, Jeon J S, Padgett J E, et al. ANCOVA-based grouping of bridge classes for seismic fragility assessment[J]. Engineering Structures, 2016, 123:379-394.
    [5] Apostolopoulos C, Ni Choine M, Kashani M M, et al. Nonlinear dynamic analysis and seismic fragility assessment of a corrosion damaged integral bridge[J]. International Journal of Structural Integrity, 2016, 7(2):227-239.
    [6] 宋帅, 钱永久, 吴刚. 基于Copula函数的桥梁系统地震易损性方法研究[J]. 工程力学, 2016, 33(11):193-200. Song Shuai, Qian Yongjiu, Wu Gang. Research on seismic fragility method of bridge system based on copula function[J]. Engineering Mechanics, 2016, 33(11):193-200. (in Chinese)
    [7] 李立峰, 吴文朋, 胡思聪, 等. 考虑氯离子侵蚀的高墩桥梁时变地震易损性分析[J]. 工程力学, 2016, 33(1):163-170. Li Lifeng, Wu Wenpeng, Hu Sicong, et al. Time-dependent seismic fragility analysis of high pier bridge based on chloride ion induced corrosion[J]. Engineering Mechanics, 2016, 33(1):163-170. (in Chinese)
    [8] Bucher C G, Bourgund U. A fast and efficient response surface approach for structural reliability problems[J]. Structural Safety, 1990, 7(1):57-66.
    [9] Liel A B, Haselton C B. Incorporating modeling uncertainties in the assessment of seismic collapse risk of buildings[J]. Structural Safety, 2009, 31(2):197-211.
    [10] Seo J, Linzell D G. Use of response surface metamodels to generate system level fragilities for existing curved steel bridges[J]. Engineering Structures, 2013, 52(9):642-653.
    [11] Buratti N, Ferracuti B, Savoia M. Response surface with random factors for seismic fragility of reinforced concrete frames[J]. Structural Safety, 2010, 32(1):42-51.
    [12] 吴子燕, 王其昂, 韩晖, 等. 基于响应面法的桥梁地震易损性分析研究[J]. 西北工业大学学报, 2011, 29(1):103-107. Wu Ziyan, Wang Qi'ang, Han Hui, et al. Applying RSM (Response Surface Methodology) to making seismic analysis of bridge more effective, general and practical[J]. Journal of Northwestern Polytechnical University, 2011, 29(1):103-107. (in Chinese)
    [13] 张尚荣, 谭平, 杜永峰, 等. 基于响应面法的层间隔震结构地震易损性分析[J]. 振动与冲击, 2014, 15(33):42-48. Zhang Shangrong, Tan Ping, Du Yongfeng, et al. Seismic fragility analysis of inter-story isolation structures based on response surface method[J]. Journal of Vibration and Shock, 2014, 15(33):42-48. (in Chinese)
    [14] Wu C F J, Hamada H. Experiments-planning, analysis and parameter design optimization[M]. America:John Wiley & Sons, 2000.
    [15] Mazzoni S, Mckenna F, Fenves G L. OpenSees command language manual[M]. Berkeley, CA:Pacific Earthquake Engineering Research Center, 2005.
    [16] JT/T 663-2006, 公路桥梁板式橡胶支座规格系列[S]. 北京:人民交通出版社, 2006. JT/T 663-2006, Series of elastomeric pad bearings for highway bridges[S]. Beijing:China Communications Press, 2006. (in Chinese)
    [17] JTG/T B02-01-2008, 公路桥梁抗震设计细则[S]. 北京:人民交通出版社, 2008. JTG/T B02-01-2008, Guideline for seismic deesign for highway bridges[S]. Beijing:China Communications Press, 2008. (in Chinese)
    [18] Aviram A, Mackie K R, Stojadinovic B. Guidelines for nonlinear analysis of bridge structures in California[R]. Berkeley, California, Pacific Earthquake Engineering Research Center, 2008.
    [19] Seismic design criterial version 1.7[S]. Sacramento, CA:California Department of Transportation, 2013.
    [20] Maroney B H, Chai Y H. Bridge abutment stiffness and strength under earthquake loadings[C]//Second International Workshop on the Seismic Design of Bridges. Queenstown, New Zealan, 1994.
    [21] 王东升, 冯启民, 王国新. 基于直杆共轴碰撞理论的桥梁地震反应邻梁碰撞分析模型[J]. 工程力学, 2004, 21(2):157-166. Wang Dongsheng, Feng Qimin, Wang Guoxin. Analysis model of pounding between adjacent bridge girders during earthquakes based on collinear impact between rods[J]. Engineering Mechanics, 2004, 21(2):157-166. (in Chinese)
    [22] Montgomery D C. Design and analysis of experiments[M]. Wiley & Sons, Inc, 1997.
    [23] Venter G, Haftka R T, Chirehdast M. Response surface approximations for fatigue life prediction[C]//Proceedings of the 38th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Material Conference and AIAA/ASM/AHS Adaptive Structures Forum. Kissimmee, FL. 1997.
    [24] Hwang H, Jernigan J B, Lin Y. Evaluation of seismic damage to Memphis bridges and highway systems[J]. Journal of Bridge Engineering, 2000, 5(4):322-330.
    [25] Merz H A, Cornell C A. Seismic risk analysis based on a quadratic magnitude-frequency law[J]. Bulletin of the Seismological Society of America, 1973, 63(6-1):1999-2006.
    [26] Specifications for highway bridges:seismic design[M]. Tokyo:Japan Road Association, 2002.
    [27] Zhang J, Huo Y. Evaluating effectiveness and optimum design of isolation devices for highway bridges using the fragility function method[J]. Engineering Structures, 2009, 31(8):1648-1660.
    [28] Hazus M H. Earthquake model technical manual[M]. Washington, D. C.:Federal Emergency Management Agency, 2003.
  • 期刊类型引用(15)

    1. 周强,李长亮,赵文洋. 基于DOE考虑结构参数不确定性的砌体结构地震易损性分析. 震灾防御技术. 2024(03): 601-612 . 百度学术
    2. 吕大刚,李功博,宋彦. 基于MLS-SVM的结构整体可靠度与全局灵敏度分析. 工程力学. 2022(S1): 92-100 . 本站查看
    3. 郑子君,陶裕梅. 坯料随机局部弯曲对滚弯成形结果影响的蒙特卡洛分析. 工程力学. 2021(08): 237-245 . 本站查看
    4. 孙滨,韩松,王东林,李明,缪圣亮. 代理模型在机翼油箱晃动适航审定中的应用. 计算力学学报. 2021(05): 638-643 . 百度学术
    5. 侯宁,王修山. 考虑结构损伤的在役混凝土桥梁有限元模型修正方法. 公路交通科技. 2021(10): 64-71 . 百度学术
    6. 石岩,熊利军,李军,郑国足,裴银海. 考虑内力状态的连续刚构桥典型施工阶段地震易损性分析. 振动与冲击. 2021(24): 136-143+179 . 百度学术
    7. 何伟,袁亚芳,白冰,王湘. 融合遗传算法与改进响应面技术的混凝土热学参数反分析. 水力发电. 2020(03): 56-60 . 百度学术
    8. 秦琪,张玄一,卢朝辉,赵衍刚. 简化三阶矩拟正态变换及其在结构可靠度分析中的应用. 工程力学. 2020(12): 78-86+113 . 本站查看
    9. 余克兴. 软土地基低层房屋砌体结构地震易损性分析. 华南地震. 2020(04): 152-158 . 百度学术
    10. 田迎军,张翼,张鹏飞,郝龙,康乐. 基于响应面法的在役桥梁有限元模型修正方法研究. 武汉理工大学学报. 2020(06): 19-25 . 百度学术
    11. 许本胜,臧朝平,缪辉,张根辈. 结构动力鲁棒优化设计方法综述. 工程力学. 2019(04): 24-36 . 本站查看
    12. 马印平,刘永健,刘江. 基于响应面法的钢管混凝土组合桁梁桥多尺度有限元模型修正. 中国公路学报. 2019(11): 51-61 . 百度学术
    13. 付波,余毅,王建凯. 基于响应面法的混凝土连续刚构桥模型修正. 中外公路. 2019(06): 136-140 . 百度学术
    14. 季熠,李彦斌,杭晓晨,廖涛,费庆国. 基于响应面代理模型的雷达天线阵面风载分析. 工程力学. 2019(11): 222-229 . 本站查看
    30. 黎雅乐,宗周红,黄学漾,林元铮,夏坚. 基于倒塌分析的连续梁桥地震损伤评估方法. 振动.测试与诊断. 2019(04): 867-874+911 . 百度学术

    其他类型引用(22)

计量
  • 文章访问数:  356
  • HTML全文浏览量:  43
  • PDF下载量:  64
  • 被引次数: 37
出版历程
  • 收稿日期:  2017-06-29
  • 修回日期:  2017-11-01
  • 刊出日期:  2018-04-24

目录

    /

    返回文章
    返回