快速荷载下CFRP-高温后混凝土界面正拉粘结性能试验

罗威, 肖云逸, 何栋尔, 章子华

罗威, 肖云逸, 何栋尔, 章子华. 快速荷载下CFRP-高温后混凝土界面正拉粘结性能试验[J]. 工程力学, 2018, 35(S1): 307-312,324. DOI: 10.6052/j.issn.1000-4750.2017.06.S059
引用本文: 罗威, 肖云逸, 何栋尔, 章子华. 快速荷载下CFRP-高温后混凝土界面正拉粘结性能试验[J]. 工程力学, 2018, 35(S1): 307-312,324. DOI: 10.6052/j.issn.1000-4750.2017.06.S059
LUO Wei, XIAO Yun-yi, HE Dong-er, ZHANG Zi-hua. Experimental study on interfacial tensile bonding performance of pre-heated CFRP-concrete under fast load[J]. Engineering Mechanics, 2018, 35(S1): 307-312,324. DOI: 10.6052/j.issn.1000-4750.2017.06.S059
Citation: LUO Wei, XIAO Yun-yi, HE Dong-er, ZHANG Zi-hua. Experimental study on interfacial tensile bonding performance of pre-heated CFRP-concrete under fast load[J]. Engineering Mechanics, 2018, 35(S1): 307-312,324. DOI: 10.6052/j.issn.1000-4750.2017.06.S059

快速荷载下CFRP-高温后混凝土界面正拉粘结性能试验

基金项目: 国家自然科学基金项目(51308307);浙江省自然科学基金项目(LY18E080013);宁波市自然科学基金项目(2016A610089)
详细信息
    作者简介:

    罗威(1992-),男,浙江人,硕士生,从事FRP加固混凝土结构研究(E-mail:2436293197@qq.com);肖云逸(1994-),男,浙江人,硕士生,从事FRP加固混凝土结构研究(E-mail:295369025@qq.com);何栋尔(1995-),男,浙江人,硕士生,从事FRP加固混凝土结构研究(E-mail:1515796846@qq.com)

    通讯作者:

    章子华(1984-),男,浙江人,副教授,博士,硕导,从事FRP加固混凝土结构研究(E-mail:zhangzihua@nbu.edu.cn).

  • 中图分类号: TB332

Experimental study on interfacial tensile bonding performance of pre-heated CFRP-concrete under fast load

  • 摘要: 该文通过对90个CFRP-高温后混凝土标准试件进行快速荷载下正拉试验,得到了加载速率、混凝土强度等级及过火温度等因素对界面正拉粘结强度的影响规律。在欧洲规范(CEB-FIP1990)建议的混凝土动态抗拉强度公式和高温后混凝土轴心抗拉强度折减公式基础上,综合考虑应变率效应和高温劣化作用,提出了高温后界面正拉粘结强度预测模型,并验证其可靠性。在此基础上给出了不同混凝土强度等级构件火灾后极限加固修复温度。试验结果表明:正拉粘结强度随混凝土强度等级和加载速率的提高而提高;在20℃~500℃内提高过火温度会显著降低界面正拉粘结强度,超过500℃后下降幅度不明显。
    Abstract: Tensile tests of 90 pre-heated CFRP - concrete specimens were conducted under fast load. The influences of three critical parameters on tensile bonding strength were investigated, including loading rate, concrete strength and heating temperature. According to the formula for dynamic tensile strength of concrete suggested by European code CEB-FIP1990 and the formula for the reduced axial tensile strength of concrete after elevated temperature, a model for estimating the interfacial tension bonding strength after elevated temperature was developed and verified. The limit temperature for repair and rehabilitation of concrete component after fire was suggested in terms of different strength grades to concrete. Results show that the tensile bonding strength increases with the increase of loading rate and concrete strength. In the range of 20℃ to 500℃, the interfacial tensile bonding strength significantly decreases with the increasing heating temperature, but no remarkable decrease is observed over 500℃.
  • [1] 中国消防在线. 中国火灾统计年鉴2016[N]. 中华人民共和国公安部消防局, 2017. China Fire online. China fire statistics yearbook 2016[N]. Fire Department of Public Security Ministry People's Republic of China, 2017(in Chinese).
    [2] 卢亦焱, 黄银燊, 张号军, 等. FRP加固技术研究新进展[J].中国铁道科学, 2006, 27(3):34-42. Lu Yiyan, Huang Yinshen, Zhang Haojun, et al. New Progress in the Study of the Technology of Reinforcement with Fiber Reinforced Plastics[J]. China Railway Science, 2006, 27(3):34-42(in Chinese).
    [3] 任够平, 李珠, 王蕊. 低速测向冲击下钢管混凝土柱挠度研究[J]. 工程力学, 2008, 25(5):170-175. Ren Gouping, Li Zhu, Wang Rui. The deflection of concrete filled steel tubular column under lateral impact at low speed[J]. Engineering Mechanics, 2008, 25(5):170-175. (in Chinese).
    [4] 田力, 朱聪. 碰撞冲击荷载作用下钢筋混凝土柱的损伤评估及防护技术[J].工程力学, 2013, 30(9):144-150. Tian Li, Zhu Cong. Damage evaluation and protection technique of RC columns under impulsive load[J]. Engineering Mechanics, 2013, 30(9):144- 150. (in Chinese).
    [5] 陆新征, 张炎圣, 何水涛, 卢啸. 超高车辆撞击桥梁上部结构研究:损伤机理与撞击荷载[J]. 工程力学, 2009, 26(增刊Ⅱ):115-125. Lu Xinzheng, Zhang Yansheng, He Shuitao, Lu Xiao.Collision between over-high trucks and bridge superstructures:damage mechanism and impact loads[J]. Engineering Mechanics, 2009, 26(SupplⅡ):115-125(in Chinese).
    [6] Xiao Jianzhuang, Li Long, Shen Luming, et al. Effects of Strain rate on mechanical behavior of modeled recycled aggregate concrete under uniaxial compression[J]. Construction and Building Materials, 2015, 93(15):214-222.
    [7] Thong M P, Hong Hao. Review of Concrete Structures Strengthened with FRP Against Impact Loading[J]. Structures, 2016, 5(7):59-70.
    [8] Li Chen, Qin Fang, Jiang Xiquan, et al. Combined effects of high temperture and high strain rate on normal weight concrete[J].International Journal of Impact Engineering, 2015, 86(12):40-56.
    [9] 李新忠, 魏雪英, 赵均海. 混凝土力学性能的应变率效应[J]. 长安大学学报(自然科学版), 2012, 32(2):82-86. Li Xinzhong, Wei Xueying, Zhao Junhai. Strain rate effect on mechanical properties of concrete[J]. Journal of Chang'an University (Natural Science Edition), 2012, 32(2):82-86. (in Chinese).
    [10] 卢渊. 冲击荷载下GFRP-混凝土界面粘结力学性能试验研究[D]. 湖南大学, 2014. Lu Yuan. Experiment study on the bond behaviour between GFRP and concrete under impact loading.[D]. Hunan University, 2014. (in Chinese).
    [11] 施嘉伟, 朱虹, 吴智深, 等. FRP片材-混凝土界面应变率效应试验研究[J]. 土木工程学报, 2012, 45(12):99-107. Shi Jiawei, Zhu hong, Wu Zhishen, et al. Experimental study of the strain rate effect of FRP sheet-concrete interface[J]. China Civil Engineering Journal, 2012, 45(12):99-107. (in Chinese).
    [12] Saiidi M S, Johnson R, Maragakis E. Strain rate effects on strength of unidirectional FRP fabrics and bond to concrete[C]. Proceedings of the Third International Conference on FRP Composites in Civil Engineering, 2006:79-82.
    [13] CECS146-2003碳纤维片材加固混凝土结构技术规程[S]. 北京:中国建筑工业出版社, 2003. CECS146-2003 Technical specification for strengthening concrete structures with carbon fiber reinforced polymer laminate[S]. Beijing:China Architecture & Building Press, 2007. (in Chinese)
    [14] Zielinski J, Reinhardt H W, Kormeling H A.Experiments on concrete under uniaxial impact tensile loading. Materials and Structure, 1981, 14:103-112.
    [15] 肖诗云, 林皋, 王哲, 等. 应变率对混凝土抗拉特性影响[J]. 大连理工大学学报, 2001, (06):721-725. Xiao Shiyun, Lin Gao, Wang Zhe, et al. Effect of strain rate on tensile properties of concrete[J]. Journal of Dalian University of Technology, 2001, (06):721-725. (in Chinese)
    [16] CEB-FIP model code 1990[S]. Trowbridge, Wiltshire, UK:Redwood Books, 1990.
    [17] 阎慧群. 高温(火灾)作用后混凝土材料力学性能研究[D]. 四川大学, 2004. Yan Huiqun. Mechanical properties of concrete after high temperature exposure[D]. Sichuan University, 2004. (in Chinese)
    [18] 王峥. 混凝土高温后力学性能的试验研究[D]. 大连理工大学, 2010. Wang Zheng. Experimental study on mechanics properties of concrete after high temperature[D]. Dalian University of Technology, 2010. (in Chinese)
    [19] GB/T50081-2002, 普通混凝土力学性能试验方法标准[S]. 北京:中国建筑工业出版社, 2003. GB/T50081- 2002, Standard for test methods of mechanical properties of ordinary concrete[S]. Beijing:China Architecture & Building Press, 2003. (in Chinese).
  • 期刊类型引用(4)

    1. 方晓成,刘江武. 混凝土建筑大跨径悬臂拼装节段梁粘接临界试验分析. 粘接. 2021(01): 105-110 . 百度学术
    2. 谭平,袁德宝. 高温条件下环氧树脂建筑结构胶的制备及性能研究. 中国胶粘剂. 2021(05): 54-59 . 百度学术
    3. 刘灿. 碳纤维布和角钢加固的混凝土柱抗震性能研究. 山东农业大学学报(自然科学版). 2021(03): 515-520 . 百度学术
    4. 王正振,龚维明,戴国亮,刘凌锋. FRP管混凝土桩与钢管混凝土桩黏结性能对比分析. 东南大学学报(自然科学版). 2019(05): 933-939 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  406
  • HTML全文浏览量:  69
  • PDF下载量:  28
  • 被引次数: 8
出版历程
  • 收稿日期:  2017-06-02
  • 修回日期:  2017-12-06
  • 刊出日期:  2018-06-29

目录

    /

    返回文章
    返回