考虑骨料体积含量影响的混凝土准脆性断裂预测模型及应用

徐平, 胡晓智, 张敏霞, 马金一

徐平, 胡晓智, 张敏霞, 马金一. 考虑骨料体积含量影响的混凝土准脆性断裂预测模型及应用[J]. 工程力学, 2018, 35(10): 75-84. DOI: 10.6052/j.issn.1000-4750.2017.08.0599
引用本文: 徐平, 胡晓智, 张敏霞, 马金一. 考虑骨料体积含量影响的混凝土准脆性断裂预测模型及应用[J]. 工程力学, 2018, 35(10): 75-84. DOI: 10.6052/j.issn.1000-4750.2017.08.0599
XU Ping, HU Xiao-zhi, ZhANG Min-xia, MA Jin-yi. QUASI-BRITTLE FRACTURE MODEL AND APPLICATION ON CONCRETE CONSIDERING AGGREGATE VOLUME CONTENT EFFECT[J]. Engineering Mechanics, 2018, 35(10): 75-84. DOI: 10.6052/j.issn.1000-4750.2017.08.0599
Citation: XU Ping, HU Xiao-zhi, ZhANG Min-xia, MA Jin-yi. QUASI-BRITTLE FRACTURE MODEL AND APPLICATION ON CONCRETE CONSIDERING AGGREGATE VOLUME CONTENT EFFECT[J]. Engineering Mechanics, 2018, 35(10): 75-84. DOI: 10.6052/j.issn.1000-4750.2017.08.0599

考虑骨料体积含量影响的混凝土准脆性断裂预测模型及应用

基金项目: 国家自然科学基金项目(U1404527,51508166);河南省交通厅科技项目(2016Y2-1);河南省博士后基金项目(169440)
详细信息
    作者简介:

    徐平(1981-),男,湖南人,副教授,博士,博士后,从事高性能混凝土及工程力学方面研究(E-mail:hpuxuping@126.com);张敏霞(1979-),女,河南人,副教授,博士,从事建筑材料与基础工程方面的研究(E-mail:zhangminxia@126.com);马金一(1993-),男,河南人,硕士生,从事高性能混凝土及结构工程方面的研究(E-mail:majinyi1007@126.com).

    通讯作者:

    胡晓智(1957-),男,澳大利亚人,终身教授,博士,博导,从事断裂力学和先进材料与应用研究(E-mail:xhu@mech.uwa.edu.au).

  • 中图分类号: TU528.1;O346.1+1

QUASI-BRITTLE FRACTURE MODEL AND APPLICATION ON CONCRETE CONSIDERING AGGREGATE VOLUME CONTENT EFFECT

  • 摘要: 基于对准脆性断裂边界影响模型参数的分析,该文将平均骨料粒径dave引入模型中,得到了考虑骨料体积含量及尺寸影响的混凝土准脆性断裂预测模型。模型中的有效裂缝与特征裂纹的比值,明确表征了三分点加载单边切口梁(SENB)试件的尺寸及初始缝长度变化时服从的断裂失效准则;模型中dave及分散系数βave将影响最大荷载Pmax作用下临界微裂纹扩展区的平均虚拟裂纹长度Δafic。通过SENB试件在Pmax时的受力分析,得到了临界正应力σn、有效裂缝长度ae、拉伸强度ft及断裂韧度KIC之间的关系式。通过Amparano的试验结果,当afic为0.8~1.4倍dave时,采用混凝土准脆性断裂模型能较好预测混凝土拉伸强度及断裂韧度。通过对Δafic=1.2dave时模型得到的预测曲线与试验结果的对比,证明了模型计算结果的可靠性。考虑骨料体积含量影响的混凝土准脆性断裂模型能基于RILEM规范中三分点加载SENB试验预测混凝土断裂韧度与拉伸强度。
    Abstract: Based on the analysis of parameters in a Boundary Effect Model, the average aggregate size dave has been introduced into the model. Whereafter, the quasi-brittle fracture prediction model on concrete considering aggregate volume content and size effect has been proposed. The ratio of effective notch length to characteristic crack length in this model can clarify the fracture failure criterion of the specimens as the variation of the dimension and initial notch length for single edge notched beams (SENB) in three-point-bending tests. The fictitious crack length in critical crack growth region at Pmax will be determined by the dave and dispersion coefficient βave in this model. Based on the stress analysis of the SENB at Pmax, the relationship between critical nominal strength σn and effective notch length ae and tensile strength ft and fracture toughness KIC has been obtained. According to the experiment results performed by Amparano, the tensile strength and fracture toughness could be predicted well by the fracture model with the average fictitious crack length Δafic=(0.8~1.4)dave. The reliability and applicability of the fracture model proposed have been confirmed by the comparison of the prediction curves derived by the fracture model at Δafic=1.2 dave with the experiment results. According to the three-point-bending tests with SENB proposed by RILEM, tensile strength and fracture toughness can be predicted by the quasi-brittle fracture prediction model on concrete considering aggregate volume content effect.
  • [1] 潘家铮. 断裂力学方法在水工结构设计中的应用[J]. 水利学报, 1980(1):45-59. Pan Jiazheng. Applications of fracture mechanics to the design of hydraulic structure[J]. Journal of Hydraulic Engineering, 1980(1):45-59. (in Chinese)
    [2] 韩宇栋, 张君, 高原. 粗骨料体积含量对混凝土断裂参数的影响[J]. 工程力学, 2013, 30(3):191-197. Han Yudong, Zhang Jun, Gao Yuan. Effect of coarse aggregate content on fracture parameters of concrete[J]. Engineering Mechanics, 2013, 30(3):191-197. (in Chinese)
    [3] 赵燕茹, 王磊, 韩霄峰, 等. 冻融条件下玄武岩纤维混凝土断裂韧度研究[J]. 工程力学, 2017, 34(9):92-101. Zhao Yanru, Wang Lei, Han Xiaofeng, et al. Fracture toughness of basalt-fiber reinforced concrete subjected to cyclic freezing and thawing[J]. Engineering Mechanics, 2017, 34(9):92-101. (in Chinese)
    [4] 管俊峰, 胡晓智, 王玉锁, 等. 用边界效应理论考虑断裂韧性和拉伸强度对破坏的影响[J]. 水利学报, 2016, 47(9):45-59. Guan Junfeng, Hu Xiaozhi, Wang Yusuo, et al. Effect of fracture toughness and tensile strength on fracture based on boundary effect theory[J]. Journal of Hydraulic Engineering, 2016, 47(9):45-59. (in Chinese)
    [5] RILEM TC-50 FMC (Draft Recommendation). Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams[J]. Materials and Structures, 1985, 18(106):285-290.
    [6] Bažant Z P. Size effect in blunt fracture:concrete, rock, metal[J]. Journal of Engineering Mechanics, ASCE, 1984, 111(4):518-535.
    [7] 徐世烺, 赵国藩. 巨型试件断裂韧度和高混凝土坝裂缝评定的断裂韧度准则[J]. 土木工程学报, 1991, 24(2):1-9. Xu Shiliang, Zhao Guofan. Concrete fracture toughness of huge specimens and criterion of fracture toughness for judging cracks in high concrete dam[J]. China Civil Engineering Journal, 1991, 24(2):1-9. (in Chinese)
    [8] Hu X Z, Duan K. Size effect and quasi-brittle fracture:the role of FPZ[J]. International Journal of Fracture, 2008, 154(1):3-14.
    [9] Karihaloo B L, Nallathambi P. Effective crack model for the determination of fracture toughness (KIC) of concrete[J]. Engineering Fracture Mechanics, 1990, 35(4/5):637-645.
    [10] Karihaloo B L, Abdalla H M, Imjai T. A simple method for determining the true specific fracture energy of concrete[J]. Magazine of Concrete Research, 2003, 55(5):471-481.
    [11] Hu X Z, Wittmann F. Size effect on toughness induced by crack close to free surface[J]. Engineering Fracture Mechanics, 2000, 65(1):209-221.
    [12] Hillerborg A. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6(6):773-782.
    [13] Hillerborg A. Results of three comparative test series for determining the fracture energy GF of concrete[J]. Materials and Structures, 1985, 18(5):407-413.
    [14] Bazant Z P, Yu Q. Universal size effect law and effect of crack depth on quasi-brittle structure strength[J]. Journal of Engineering Mechanics, 2009, 135(2):78-84.
    [15] Hoover C G, Bazant Z P. Comparison of the Hu-Duan boundary effect model with the size-shape effect law for quasi-brittle fracture based on new comprehensive fracture tests[J]. Journal of Engineering Mechanics, 2014, 140(3):480-486.
    [16] Duan K, Hu X Z, Wittmann FH. Boundary effect on concrete fracture and non-constant fracture energy distribution[J]. Engineering Fracture Mechanics, 2003, 70(16):2257-2268.
    [17] Hu X Z, Duan K. Influence of fracture process zone height on fracture energy of concrete[J]. Cement and Concrete Research, 2004, 34(8):1321-1330.
    [18] Hu X Z, Duan K. Size effect:influence of proximity of fracture process zone to specimen boundary[J]. Engineering Fracture Mechanics 2007, 74(7):1093-1100.
    [19] Hu X Z, Duan K. Mechanism behind the size effect phenomenon[J]. Journal of Engineering Mechanics, ASCE, 2009, 136(1):60-68.
    [20] Amparano F E, Xi Y, Roh Y. Experimental study on the effect of aggregate content on fracture behavior of concrete[J]. Engineering Fracture Mechanics, 2000, 67(9):65-84.
    [21] Zollinger D G, Tang T, Yoo R H. Fracture toughness of concrete at early ages. ACI Materials Journal, 1993, 90(5):463-471.
    [22] Sim J, Yang K, Lee E, Yi S. Effects of aggregate and specimen sizes on lightweight concrete fracture energy[J]. Journal of Materials in Civil Engineering, 2014, 26(5):845-854.
    [23] Nikbin I M, Beygi M H A, Kazemi M T, et al. Effect of coarse aggregate volume on fracture behavior of selfcompacting concrete[J]. Construction and Building Materials, 2014, 52(2):137-145.
    [24] Karamloo M, Mazloom M, Payganeh G. Effects of maximum aggregate size on fracture behaviors of self-compacting lightweight concrete[J]. Construction and Building Materials, 2016, 123(10):508-515.
    [25] Wang Y S, Hu X Z. Determination of tensile strength and fracture toughness of granite using notched three-point-bend samples[J]. Rock Mechanics and Rock Engineering, 2017, 50(1):17-28.
    [26] Hu X Z, Guan J F, Wang Y S, et al. Comparison of boundary and size effect models based on new developments[J]. Engineering Fracture Mechanics, 2017, 175(4):146-167.
    [27] Guan J F, Hu X Z, Li Q. In-depth analysis of notched 3-p-b concrete fracture[J]. Engineering Fracture Mechanics, 2016, 165(10):57-71.
    [28] ASTM E399-12e2, Standard test method for linear-elastic plane-strain fracture toughness testing of high strength metallic materials[S]. Philadelphia:American Society for Testing and Material, 2013.
    [29] Muralidhara S, Raghu Prasad B K, Eskandari H, et al. Fracture process zone size and true fracture energy of concrete using acoustic emission[J]. Construction and Building Materials, 2010, 24(4):479-486.
    [30] Kumpova I, Fila T, Vavik D, et al. X-ray dynamic observation of the evolution of the fracture process zone in a quasi-brittle specimen[C]. 16th International Workshop on Radiation Imaging Detectors. Trieste:IOP Publishing for SISSA Medialab, 2015:1-8.
    [31] Wang Y S, Hu X Z, Liang L, et al. Determination of tensile strength and fracture toughness of concrete using notched 3-p-b specimens[J]. Engineering Fracture Mechanics, 2016, 160(7):67-77.
  • 期刊类型引用(9)

    1. 高小峰,杨程,李庆斌,胡昱,谭尧升,周欣竹. 龄期相关的混凝土尺寸效应断裂模型. 工程力学. 2024(03): 26-38 . 本站查看
    2. 高小峰,胡昱,杨宁,邬昆,李庆斌. 低热水泥全级配混凝土断裂试验及尺寸效应分析. 工程力学. 2022(07): 183-193 . 本站查看
    3. 竺铝涛,郝丽,沈伟,祝成炎. 基于边界效应模型的玻璃纤维复合材料准脆性断裂性能分析. 纺织学报. 2022(07): 75-80 . 百度学术
    4. 马连华,朱思宪,孙可可. 高围压下钢纤维混凝土动态压缩性能. 建筑科学. 2022(09): 27-34 . 百度学术
    5. 尹阳阳,胡少伟. 小跨高比混凝土三点弯曲梁双K断裂参数研究. 工程力学. 2020(12): 138-146+170 . 本站查看
    6. 尹阳阳,胡少伟,王宇航. 自重对混凝土三点弯曲梁断裂性能的影响. 工程力学. 2019(07): 48-56+108 . 本站查看
    7. 祖坤,熊二刚,宋良英,范团结. 高强混凝土构件力学性能研究综述. 硅酸盐通报. 2019(10): 3178-3192 . 百度学术
    8. 李冬,金浏,杜修力,刘晶波,Duan Wen-hui. 基于细观结构性能和尺度的混凝土材料层次尺寸效应解析理论. 水利学报. 2019(11): 1392-1399 . 百度学术
    9. 胡少伟,尹阳阳,范冰,张润. 基于等效纯弯曲梁的混凝土双K断裂参数研究. 工程力学. 2019(12): 44-51 . 本站查看

    其他类型引用(20)

计量
  • 文章访问数:  492
  • HTML全文浏览量:  57
  • PDF下载量:  98
  • 被引次数: 29
出版历程
  • 收稿日期:  2017-08-01
  • 修回日期:  2018-04-03
  • 刊出日期:  2018-10-28

目录

    /

    返回文章
    返回