[1] |
潘家铮. 断裂力学方法在水工结构设计中的应用[J]. 水利学报, 1980(1):45-59. Pan Jiazheng. Applications of fracture mechanics to the design of hydraulic structure[J]. Journal of Hydraulic Engineering, 1980(1):45-59. (in Chinese)
|
[2] |
韩宇栋, 张君, 高原. 粗骨料体积含量对混凝土断裂参数的影响[J]. 工程力学, 2013, 30(3):191-197. Han Yudong, Zhang Jun, Gao Yuan. Effect of coarse aggregate content on fracture parameters of concrete[J]. Engineering Mechanics, 2013, 30(3):191-197. (in Chinese)
|
[3] |
赵燕茹, 王磊, 韩霄峰, 等. 冻融条件下玄武岩纤维混凝土断裂韧度研究[J]. 工程力学, 2017, 34(9):92-101. Zhao Yanru, Wang Lei, Han Xiaofeng, et al. Fracture toughness of basalt-fiber reinforced concrete subjected to cyclic freezing and thawing[J]. Engineering Mechanics, 2017, 34(9):92-101. (in Chinese)
|
[4] |
管俊峰, 胡晓智, 王玉锁, 等. 用边界效应理论考虑断裂韧性和拉伸强度对破坏的影响[J]. 水利学报, 2016, 47(9):45-59. Guan Junfeng, Hu Xiaozhi, Wang Yusuo, et al. Effect of fracture toughness and tensile strength on fracture based on boundary effect theory[J]. Journal of Hydraulic Engineering, 2016, 47(9):45-59. (in Chinese)
|
[5] |
RILEM TC-50 FMC (Draft Recommendation). Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams[J]. Materials and Structures, 1985, 18(106):285-290.
|
[6] |
Bažant Z P. Size effect in blunt fracture:concrete, rock, metal[J]. Journal of Engineering Mechanics, ASCE, 1984, 111(4):518-535.
|
[7] |
徐世烺, 赵国藩. 巨型试件断裂韧度和高混凝土坝裂缝评定的断裂韧度准则[J]. 土木工程学报, 1991, 24(2):1-9. Xu Shiliang, Zhao Guofan. Concrete fracture toughness of huge specimens and criterion of fracture toughness for judging cracks in high concrete dam[J]. China Civil Engineering Journal, 1991, 24(2):1-9. (in Chinese)
|
[8] |
Hu X Z, Duan K. Size effect and quasi-brittle fracture:the role of FPZ[J]. International Journal of Fracture, 2008, 154(1):3-14.
|
[9] |
Karihaloo B L, Nallathambi P. Effective crack model for the determination of fracture toughness (KIC) of concrete[J]. Engineering Fracture Mechanics, 1990, 35(4/5):637-645.
|
[10] |
Karihaloo B L, Abdalla H M, Imjai T. A simple method for determining the true specific fracture energy of concrete[J]. Magazine of Concrete Research, 2003, 55(5):471-481.
|
[11] |
Hu X Z, Wittmann F. Size effect on toughness induced by crack close to free surface[J]. Engineering Fracture Mechanics, 2000, 65(1):209-221.
|
[12] |
Hillerborg A. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6(6):773-782.
|
[13] |
Hillerborg A. Results of three comparative test series for determining the fracture energy GF of concrete[J]. Materials and Structures, 1985, 18(5):407-413.
|
[14] |
Bazant Z P, Yu Q. Universal size effect law and effect of crack depth on quasi-brittle structure strength[J]. Journal of Engineering Mechanics, 2009, 135(2):78-84.
|
[15] |
Hoover C G, Bazant Z P. Comparison of the Hu-Duan boundary effect model with the size-shape effect law for quasi-brittle fracture based on new comprehensive fracture tests[J]. Journal of Engineering Mechanics, 2014, 140(3):480-486.
|
[16] |
Duan K, Hu X Z, Wittmann FH. Boundary effect on concrete fracture and non-constant fracture energy distribution[J]. Engineering Fracture Mechanics, 2003, 70(16):2257-2268.
|
[17] |
Hu X Z, Duan K. Influence of fracture process zone height on fracture energy of concrete[J]. Cement and Concrete Research, 2004, 34(8):1321-1330.
|
[18] |
Hu X Z, Duan K. Size effect:influence of proximity of fracture process zone to specimen boundary[J]. Engineering Fracture Mechanics 2007, 74(7):1093-1100.
|
[19] |
Hu X Z, Duan K. Mechanism behind the size effect phenomenon[J]. Journal of Engineering Mechanics, ASCE, 2009, 136(1):60-68.
|
[20] |
Amparano F E, Xi Y, Roh Y. Experimental study on the effect of aggregate content on fracture behavior of concrete[J]. Engineering Fracture Mechanics, 2000, 67(9):65-84.
|
[21] |
Zollinger D G, Tang T, Yoo R H. Fracture toughness of concrete at early ages. ACI Materials Journal, 1993, 90(5):463-471.
|
[22] |
Sim J, Yang K, Lee E, Yi S. Effects of aggregate and specimen sizes on lightweight concrete fracture energy[J]. Journal of Materials in Civil Engineering, 2014, 26(5):845-854.
|
[23] |
Nikbin I M, Beygi M H A, Kazemi M T, et al. Effect of coarse aggregate volume on fracture behavior of selfcompacting concrete[J]. Construction and Building Materials, 2014, 52(2):137-145.
|
[24] |
Karamloo M, Mazloom M, Payganeh G. Effects of maximum aggregate size on fracture behaviors of self-compacting lightweight concrete[J]. Construction and Building Materials, 2016, 123(10):508-515.
|
[25] |
Wang Y S, Hu X Z. Determination of tensile strength and fracture toughness of granite using notched three-point-bend samples[J]. Rock Mechanics and Rock Engineering, 2017, 50(1):17-28.
|
[26] |
Hu X Z, Guan J F, Wang Y S, et al. Comparison of boundary and size effect models based on new developments[J]. Engineering Fracture Mechanics, 2017, 175(4):146-167.
|
[27] |
Guan J F, Hu X Z, Li Q. In-depth analysis of notched 3-p-b concrete fracture[J]. Engineering Fracture Mechanics, 2016, 165(10):57-71.
|
[28] |
ASTM E399-12e2, Standard test method for linear-elastic plane-strain fracture toughness testing of high strength metallic materials[S]. Philadelphia:American Society for Testing and Material, 2013.
|
[29] |
Muralidhara S, Raghu Prasad B K, Eskandari H, et al. Fracture process zone size and true fracture energy of concrete using acoustic emission[J]. Construction and Building Materials, 2010, 24(4):479-486.
|
[30] |
Kumpova I, Fila T, Vavik D, et al. X-ray dynamic observation of the evolution of the fracture process zone in a quasi-brittle specimen[C]. 16th International Workshop on Radiation Imaging Detectors. Trieste:IOP Publishing for SISSA Medialab, 2015:1-8.
|
[31] |
Wang Y S, Hu X Z, Liang L, et al. Determination of tensile strength and fracture toughness of concrete using notched 3-p-b specimens[J]. Engineering Fracture Mechanics, 2016, 160(7):67-77.
|