基于反演推定的空间结构随机缺陷传播法

朱钊辰, 罗永峰, 黄青隆, 相阳

朱钊辰, 罗永峰, 黄青隆, 相阳. 基于反演推定的空间结构随机缺陷传播法[J]. 工程力学, 2018, 35(12): 89-97. DOI: 10.6052/j.issn.1000-4750.2017.09.0680
引用本文: 朱钊辰, 罗永峰, 黄青隆, 相阳. 基于反演推定的空间结构随机缺陷传播法[J]. 工程力学, 2018, 35(12): 89-97. DOI: 10.6052/j.issn.1000-4750.2017.09.0680
ZHU Zhao-chen, LUO Yong-feng, HUANG Qing-long, XIANG Yang. STOCHASTIC IMPERFECTION PROPAGATION METHOD FOR SPATIAL STRUCTURES BASED ON INVERSION RECKONING[J]. Engineering Mechanics, 2018, 35(12): 89-97. DOI: 10.6052/j.issn.1000-4750.2017.09.0680
Citation: ZHU Zhao-chen, LUO Yong-feng, HUANG Qing-long, XIANG Yang. STOCHASTIC IMPERFECTION PROPAGATION METHOD FOR SPATIAL STRUCTURES BASED ON INVERSION RECKONING[J]. Engineering Mechanics, 2018, 35(12): 89-97. DOI: 10.6052/j.issn.1000-4750.2017.09.0680

基于反演推定的空间结构随机缺陷传播法

基金项目: 国家自然科学基金项目(51378379,51678431)
详细信息
    作者简介:

    朱钊辰(1993-),男,湖南人,博士生,从事空间钢结构稳定、地震反应分析研究(E-mail:1993_chen@tongji.edu.cn);黄青隆(1991-),男,海南人,博士生,从事空间钢结构地震反应分析研究(E-mail:huangqinglong@tongji.edu.cn);相阳(1988-),男,山东人,博士生,从事钢结构地震反应分析与抗震性能评估研究(E-mail:001_xiangyang@tongji.edu.cn).

    通讯作者:

    罗永峰(1957-),男,陕西人,教授,博士,博导,从事空间钢结构稳定、钢结构检测鉴定研究(E-mail:yfluo93@tongji.edu.cn).

  • 中图分类号: TU393.3

STOCHASTIC IMPERFECTION PROPAGATION METHOD FOR SPATIAL STRUCTURES BASED ON INVERSION RECKONING

  • 摘要: 在空间结构施工过程监测和检测评估等工作中,需依据部分已测节点几何位形推断结构全部节点几何位形。该文提出随机缺陷传播算法,建立几何位置偏差在节点之间的传播法则,利用有限已知节点几何位形偏差反演推定空间结构整体几何缺陷,进而确定结构整体几何位形,并用随机偏差理论证明所生成的结构随机缺陷服从正态分布。对一个缩尺K6单层网壳模型进行实测和稳定分析,结果表明:相对于随机缺陷法和一致缺陷模态法,采用随机缺陷传播法生成的结构几何缺陷与实测几何缺陷接近,据此计算得到的极限承载力更接近结构承载力理论值。基于随机缺陷传播法得到的空间结构整体稳定极限荷载因子中位数,可作为结构的实际极限承载能力代表值。
    Abstract: The geometric configuration of a spatial structure often needs to be determined by partial measured nodal location for the structural analysis in construction process monitoring and structure inspection. Thusly, an imperfection-introduced method, named stochastic imperfection propagation method (SIPM), was proposed and the deviation propagation principle was established. This method can reckon the geometric imperfection according to the information of limited deviation-known nodes. Based on the stochastic deviation theory, it was verified that the distribution of imperfection introduced by SIPM is in accord with a normal distribution. Further, the coordinate measurement and stability analysis were carried out on a reduced-scaled K6 reticulated shell. The numerical results show that:compared with the stochastic imperfection method and consistent imperfection mode method, the goodness of fit of imperfection generated by SIPM is higher and the calculated load-carry capacity based on SIPM is more closed to the theoretical load-carry capacity of structure than those of these two methods. Meanwhile, the median load factor based on SIPM is more reasonable to be taken as the representative value of actual load-carry capacity.
  • [1] 罗永峰, 韩庆华, 李海旺. 建筑钢结构稳定理论与应用[M]. 北京:人民交通出版社, 2010. Luo Yongfeng, Han Qinghua, Li Haiwang. Stability of Steel Structures-The Theory and Implement[M]. Beijing:China Communications Press, 2010. (In Chinese)
    [2] Papp F. Buckling assessment of steel members through overall imperfection method[J]. Engineering Structures, 2016, 106(1):124-136.
    [3] Zhu Z C, Luo Y F, Xiang Y. Global stability analysis of spatial structures based on Eigen-stiffness and structural Eigen-curve[J]. Journal of Constructional Steel Research, 2018, 141(2):226-240.
    [4] Bruno L, Sassone M, Venuti F. Effects of the Equivalent Geometric Nodal Imperfections on the stability of single layer grid shells[J]. Engineering Structures, 2016, 112(7):184-199.
    [5] 何政, 胡意涛, 朱振宇, 等. 强震下网壳结构性能的多模态整体损伤演化[J]. 工程力学, 2016, 33(4):104-113. He Zheng, Hu Yitao, Zhu Zhenyu, et al. Multi-modebased global damage evolution of lattice shells under strong earthquakes[J]. Engineering Mechanics, 2016, 33(4):104-113. (in Chinese)
    [6] 徐颖, 韩庆华, 练继建. 单层球面网壳抗连续倒塌性能研究[J]. 工程力学, 2016, 33(11):105-112. Xu Ying, Han Qinghua, Lian Jijian. Progressive collapse performance of single-layer latticed shells[J]. Engineering Mechanics, 2016, 33(11):105-112. (in Chinese)
    [7] 蔡健, 贺盛, 姜正荣, 等. 单层网壳结构稳定性分析方法研究[J]. 工程力学, 2015, 32(7):103-110. Cai Jian, He Sheng, Jiang Zhengrong, et al. Investigation on stability analysis method of single layer latticed shells[J]. Engineering Mechanics, 2015, 32(7):103-110. (in Chinese)
    [8] 沈士钊, 陈昕. 网壳结构稳定性[M]. 北京:科学出版社, 1999. Shen Shizhao, Chen Xin. Stability of grid shell[M]. Beijing:Scientific Press, 1999. (in Chinese)
    [9] 金路, 刘丹, 贾连光. 考虑随机缺陷的钢框架-支撑结构试验研究与有限元分析[J]. 工程力学, 2016, 33(增刊1):79-84. Jin Lu, Liu Dan, Jia Lianguang. Experimental study and finite element analysis on steel braced frame structures considering random imperfections[J]. Engineering Mechanics, 2016, 33(Supll 1):79-84. (in Chinese)
    [10] Liu H, Zhang W, Yuan H. Structural stability analysis of single-layer reticulated shells with stochastic imperfections[J]. Engineering Structures, 2016, 124(19):473-479.
    [11] Chen G, Zhang H, Rasmussen Kim J R, et al. Modeling geometric imperfections for reticulated shell structures using random field theory[J]. Engineering Structures, 2016, 126(21):481-489.
    [12] JGJ 7-2010, 空间网格结构技术规程[S]. 北京:中国建筑工业出版社, 2011:3. JGJ 7-2010, Technical specification for space frame structures[S]. Beijing:China Architecture Industry Press, 2011:3. (in Chinese)
    [13] EN 1993-1-6:2007, Eurocode 3:Design of steel structures-Part 1-6:strength and stability of shell structures[S]. Brussels:European Committee for Standardization, 2007.
    [14] 罗永峰, 王春江, 陈晓明, 等. 建筑钢结构施工力学原理[M]. 北京:中国建筑工业出版社, 2009. Luo Yongfeng, Wang Chunjiang, Chen Xiaoming, et al. Mechanics Principle of Constructional Steel Structures[M]. Beijing:China Architecture Industry Press, 2009. (in Chinese)
    [15] GB51008-2016, 高耸与复杂钢结构检测与鉴定标准[S]. 北京:中国计划出版社, 2016. GB51008-2016, Technical standard for inspection and appraisal of high-rising and complex steel structures[S]. Beijing:China Planning Press, 2016. (in Chinese)
    [16] 洪丽霞. 实测缺陷对单层球面网壳结构性能的影响研究[D]. 西安:长安大学, 2011. Hong Lixia. Influence analysis of lattice shell structure based on measured imperfection[D]. Xi'an:Chang'an University, 2011. (in Chinese)
    [17] 罗立胜, 罗永峰, 郭小农. 考虑节点几何位置偏差的既有网壳结构稳定计算方法[J]. 湖南大学学报(自科版), 2013, 40(3):26-30. Luo Lisheng, Luo Yongfeng, Guo Xiaonong. Overall stability of existing reticulated shells considering the effect of geometric position deviation of joints[J]. Journal of Hunan University (Natural Science), 2013, 40(3):26-30. (in Chinese)
    [18] 罗永峰, 刘俊. 既有空间结构位形推算的随机偏差方法[J]. 同济大学学报(自然科学版), 2017, 45(6):791-798. Luo Yongfeng, Liu Jun. Stochastic Deviation method of reckoning geometric shapes of existing spatial structures[J]. Journal of Tongji University (Natural Science), 2017, 45(6):791-798. (in Chinese)
    [19] 魏德敏, 涂家明. 单层网壳结构非线性稳定的随机缺陷模态法研究[J]. 华南理工大学学报(自然科学版), 2016, 44(7):83-89. Wei Demin, Tu Jiaming. Study on Stochastic Imperfection Modal Method for nonlinear stability of single-layer reticulated shells[J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(7):83-89. (in Chinese)
    [20] 郭佳民, 董石麟, 袁行飞. 随机缺陷模态法在弦支穹顶稳定性计算中的应用[J]. 工程力学, 2011, 28(11):178-183. Guo Jiamin, Dong Shilin, Yuan Xingfei. Application of random imperfection mode method in stability calculation of suspend-dome[J]. Engineering Mechanics, 2011, 28(11):178-183. (in Chinese)
    [21] 蔡健, 贺盛, 姜正荣,等. 单层网壳结构稳定分析中初始几何缺陷最大值的研究[J]. 建筑结构学报, 2015, 36(6):86-92. Cai Jian, He Sheng, Jiang Zhengrong, et al. Investigation on maximum value of initial geometric imperfection in stability analysis of single layer reticulated shells[J]. Journal of Building Structures, 2015, 36(6):86-92. (in Chinese)
    [22] 刘学春, 张爱林, 葛家琪,等. 施工偏差随机分布对弦支穹顶结构整体稳定性影响的研究[J]. 建筑结构学报, 2007, 28(6):76-82. Liu Xuechun, Zhang Ailin, Ge Jiaqi, et al. Study on the influence of construction deviation random distribution on the integral stability of suspend-dome[J]. Journal of Building Structures, 2007, 28(6):76-82. (in Chinese)
    [23] Thadewald T, Buening H. Jarque-Bera test and its competitors for testing normality-a power comparison[J]. Journal of Applied Statistics, 2007, 34(1):87-105.
    [24] Massey Jr Frank J. The Kolmogorov-Smirnov test for goodness of fit[J]. Journal of the American statistical Association, 1951, 46(253):68-78.
    [25] Miller L H. Table of percentage points of Kolmogorov statistics[J]. Journal of the American Statistical Association, 1956, 51(273):111-121.
  • 期刊类型引用(4)

    1. 张玉建,杨坤,何超,余少乐,姚士帅,孙璠,卫林强. 基于改进模拟退火算法的单层网壳结构拆除施工路径优化方法. 建筑结构. 2025(05): 107-116 . 百度学术
    2. 朱钊辰,罗永峰,曲扬,黄青隆. 基于精细化构件模型的网壳结构动力响应分析. 建筑结构学报. 2020(02): 115-124 . 百度学术
    3. 李玉刚,范峰,洪汉平. 基于小样本记录的柱面网壳结构地震响应评估. 工程力学. 2020(05): 228-236 . 本站查看
    4. 朱钊辰,罗永峰,刘怡鹏,黄青隆,高喜欣,曲扬. 单层球面网壳MTMD振动控制试验研究. 东南大学学报(自然科学版). 2019(04): 696-704 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  454
  • HTML全文浏览量:  37
  • PDF下载量:  44
  • 被引次数: 8
出版历程
  • 收稿日期:  2017-09-04
  • 修回日期:  2018-06-26
  • 刊出日期:  2018-12-28

目录

    /

    返回文章
    返回