不锈钢T形件螺栓连接承载性能试验研究

袁焕鑫, 胡松, 杜新喜, 程晓燕

袁焕鑫, 胡松, 杜新喜, 程晓燕. 不锈钢T形件螺栓连接承载性能试验研究[J]. 工程力学, 2019, 36(2): 215-223. DOI: 10.6052/j.issn.1000-4750.2017.12.0986
引用本文: 袁焕鑫, 胡松, 杜新喜, 程晓燕. 不锈钢T形件螺栓连接承载性能试验研究[J]. 工程力学, 2019, 36(2): 215-223. DOI: 10.6052/j.issn.1000-4750.2017.12.0986
YUAN Huan-xin, HU Song, DU Xin-xi, CHENG Xiao-yan. TESTS ON LOAD-CARRYING BEHAVIOR OF STAINLESS STEEL BOLTED T-STUB CONNECTIONS[J]. Engineering Mechanics, 2019, 36(2): 215-223. DOI: 10.6052/j.issn.1000-4750.2017.12.0986
Citation: YUAN Huan-xin, HU Song, DU Xin-xi, CHENG Xiao-yan. TESTS ON LOAD-CARRYING BEHAVIOR OF STAINLESS STEEL BOLTED T-STUB CONNECTIONS[J]. Engineering Mechanics, 2019, 36(2): 215-223. DOI: 10.6052/j.issn.1000-4750.2017.12.0986

不锈钢T形件螺栓连接承载性能试验研究

基金项目: 国家自然科学基金项目(51508424);湖北省自然科学基金项目(2018CFB441);中国博士后科学基金特别资助项目(2015T80832)
详细信息
    作者简介:

    胡松(1994-),男,安徽人,硕士生,从事钢结构工程研究(E-mail:742016402@qq.com);杜新喜(1961-),男,陕西人,教授,博士,博导,从事钢结构工程研究(E-mail:duxinxi@163.com);程晓燕(1974-),女,湖北人,副教授,博士,从事钢结构工程研究(E-mail:xiaoyancheng39@163.com).

    通讯作者:

    袁焕鑫(1988-),男,湖南人,副教授,博士,从事钢结构工程研究(E-mail:yuanhx@whu.edu.cn).

  • 中图分类号: TU391

TESTS ON LOAD-CARRYING BEHAVIOR OF STAINLESS STEEL BOLTED T-STUB CONNECTIONS

  • 摘要: 通过开展14组不锈钢T形件螺栓连接试件的单调拉伸试验,得到了各试件的极限承载力、破坏模式和撬力发展规律,分析翼缘厚度、翼缘材料、螺栓直径和螺栓预拉力等因素对不锈钢T形件承载性能的影响。结果表明:螺栓预拉力对试件的极限承载力没有明显影响,但会提高试件的初始刚度; T形件的破坏模式取决于翼缘和螺栓的相对关系,与螺栓预拉力无明显关系;撬力值随着翼缘厚度和螺栓直径的减小而增大,但极限承载力对应的撬力值与螺栓预拉力无关。将试验结果与现行欧洲、美国和中国规范的计算结果进行比较,表明现行国内外规范的相关计算公式均较保守,其中美国规范由于翼缘采用极限抗拉强度,计算结果与试验值最为接近。
    Abstract: A total of 14 stainless steel bolted T-stubs were tested under monotonic loading. The ultimate strength, failure modes and prying forces of the test specimens were obtained. The effects of the key parameters including the flange thickness, flange material grade, bolt diameter and bolt preloading were analyzed. It was revealed that the introduction of bolt preloading had little effect on the ultimate strength and failure mode, but resulted in increased initial stiffness for the T-stub specimens. The failure mode of the T-stub connections depended on both the tensile strength of the bolt and the flexural strength of the flange. The prying forces increased gradually with reduced flange thickness and bolt diameters, while the prying forces corresponding to the ultimate strength were not influenced by the bolt preloading. The test results were further compared with the strength predicted by the existing European, American and Chinese design codes. It was found that the existing design provisions were generally conservative for stainless steel bolted T-stub connections, among which the American code provided relatively better predictions. It may be attributed to the use of material tensile strength instead of yield strength.
  • [1] 刘智敏, 崔玲, 孙静. 考虑撬力作用的T形受拉连接设计方法[J]. 北方交通大学学报, 2002, 26(4):12-15. Liu Zhimin, Cui Ling, Sun Jing. Design method for T-shaped tensile connection considering prying action[J]. Journal of Northern Jiaotong University, 2002, 26(4):12-15. (in Chinese)
    [2] 郑杰, 王燕. 考虑撬力的高强螺栓T形受拉连接设计现状[J]. 钢结构, 2006, 21(4):15-18. Zheng Jie, Wang Yan. Present situation of design on high strength bolt T-shaped tensile connection considering prying action[J]. Steel Construction, 2006, 21(4):15-18. (in Chinese)
    [3] 王萌, 王燕, 柴昶, 等. 欧洲规范EC3高强螺栓等效T形件的有效长度及承载力研究[J]. 建筑钢结构进展, 2009, 11(3):58-62. Wang Meng, Wang Yan, Chai Chang, et al. Effective length of an equivalent T-stub for high-strength bolted connections in EC3 and study on the resistance[J]. Progress in Steel Building Structures, 2009, 11(3):58-62. (in Chinese)
    [4] 刘秀丽, 王燕, 李美红, 等. 钢结构T形连接高强度螺栓受力分析及数值模拟[J]. 建筑科学与工程学报, 2016, 33(2):63-70. Liu Xiuli, Wang Yan, Li Meihong, et al. Force analysis and numerical simulation of high strength bolts in T-stub connection of steel structure[J]. Journal of Architecture and Civil Engineering, 2016, 33(2):63-70. (in Chinese)
    [5] 暴伟, 周向前, 班敏, 等. 受拉T形连接件高强螺栓受力性能研究[J]. 建筑结构学报, 2016, 37(增刊1):380-387. Bao Wei, Zhou Xiangqian, Ban Min, et al. Research on mechanical property of high-strength bolts in tensioned T-stub connections[J]. Journal of Building Structures, 2016, 37(Suppl 1):380-387. (in Chinese)
    [6] Zhao M S, Lee C K, Chiew S P. Tensile behavior of high performance structural steel T-stub joints[J]. Journal of Constructional Steel Research, 2016, 122:316-325.
    [7] Piluso V, Faella C, Rizzano G. Ultimate behavior of bolted T-stubs. Ⅱ:Model validation[J]. Journal of Structural Engineering, 2001, 127(6):694-704.
    [8] Massimo L, Gianvittorio R, Aldina S, et al. Experimental analysis and mechanical modeling of T-stubs with four bolts per row[J]. Journal of Constructional Steel Research, 2014, 101:158-174.
    [9] 赵伟, 童根树. 加劲T形件连接节点试验研究[J]. 浙江大学学报(工学版), 2008, 42(1):66-71. Zhao Wei, Tong Genshu. Test analysis of stiffened T-stub connections[J]. Journal of Zhejiang University (Engineering Science), 2008, 42(1):66-71. (in Chinese)
    [10] 吴兆旗, 姜绍飞, 喻露, 等. 设置垫板的T形件螺栓连接滞回性能试验研究[J]. 工程力学, 2014, 31(2):164-169, 176. Wu Zhaoqi, Jiang Shaofei, Yu Lu, et al. Experimental research on the hysteretic behavior of bolted T-stub connection with inserted plates[J]. Engineering Mechanics, 2014, 31(2):164-169, 176. (in Chinese)
    [11] Guo H C, Liang G, Li Y L, et al. Q690 high strength steel T-stub tensile behavior:Experimental research and theoretical analysis[J]. Journal of Constructional Steel Research, 2017, 139:473-483.
    [12] Liang G, Guo H C, Liu Y H, et al. Q690 high strength steel T-stub behavior:Experimental and numerical analysis[J]. Thin-Walled Structures, 2018, 122:554-571.
    [13] 舒赣平, 郑宝锋, 沈晓明. 冷成型不锈钢管轴心受压柱试验研究[J]. 建筑结构学报, 2013, 34(5):87-95. Shu Ganping, Zheng Baofeng, Shen Xiaoming. Experimental study on cold-formed stainless steel tubular columns subjected to axial loading[J]. Journal of Building Structures, 2013, 34(5):87-95. (in Chinese)
    [14] 辛连春, 沈晓明, 舒赣平, 等. 不锈钢受弯构件的试验研究[J]. 工业建筑, 2012, 42(5):33-40. Xin Lianchun, Shen Xiaoming, Shu Ganping, et al. Experimental investigations of stainless steel beams[J]. Industrial Construction, 2012, 42(5):33-40. (in Chinese)
    [15] 尚帆, 杨璐, 赵梦晗, 等. 不锈钢工字形截面轴心受压构件整体稳定性能有限元研究[J]. 工程力学, 2016, 33(3):112-119. Shang Fan, Yang Lu, Zhao Menghan, et al. FEA of the overall stability for I-section stainless steel member under axial compression[J]. Engineering Mechanics, 2016, 33(3):112-119. (in Chinese)
    [16] 袁焕鑫, 王元清, 石永久, 等. 焊接箱形截面不锈钢柱相关稳定性能分析[J]. 工程力学, 2015, 32(9):84-91. Yuan Huanxin, Wang Yuanqing, Shi Yongjiu, et al. Behavior of interactive buckling in welded stainless steel box section columns[J]. Engineering Mechanics, 2015, 32(9):84-91. (in Chinese)
    [17] 邹若梦, 董军, 金晓兰. 不锈钢对接焊缝连接试验及设计建议[J]. 建筑结构, 2013, 43(9):83-87. Zou Ruomeng, Dong Jun, Jin Xiaolan. Experimental and design suggestions for stainless steel weld connections[J]. Building Structure, 2013, 43(9):83-87. (in Chinese)
    [18] 张有振, 杨璐, 周晖, 等. 双相型不锈钢角焊缝连接承载性能有限元分析[J]. 工程力学, 2017, 34(9):110-118, 157. Zhang Youzhen, Yang Lu, Zhou Hui, et al. Finite element analyses of loading capacity of fillet-weld connections fabricated from duplex stainless steel[J]. Engineering Mechanics, 2017, 34(9):110-118, 157. (in Chinese)
    [19] 杨璐, 卫璇, 张有振, 等. 不锈钢母材及其焊缝金属材料单拉本构关系[J]. 工程力学, 2018, 35(5):125-130, 151. Yang Lu, Wei Xuan, Zhang Youzhen, et al. Research on the tensile stress-strain relation of stainless steel base material and its weld metal mate[J], Engineering Mechanics, 2018, 35(5):125-130, 151. (in Chinese)
    [20] 段文峰, 赵龙, 刘文渊, 等. 不锈钢螺栓连接节点抗剪性能试验[J]. 沈阳建筑大学学报:自然科学版, 2017, 33(3):410-419. Duan Wenfeng, Zhao Long, Liu Wenyuan, et al. Experimental research on bearing performance of stainless steel bolted joints[J]. Journal of Shenyang Jianzhu University (Natural Science), 2017, 33(3):410-419. (in Chinese)
    [21] CECS 410:2015, 不锈钢结构技术规程[S]. 北京:中国计划出版社, 2015. CECS 410:2015, Technical specification for stainless steel structures[S]. Beijing:China Planning Press, 2015. (in Chinese)
    [22] GB/T 228.1-2010, 金属材料拉伸试验第1部分:室温试验方法[S]. 北京:中国标准出版社, 2011. GB/T 228.1-2010, Metallic materials-Tensile testing-Part 1:Method of test at room temperature[S]. Beijing:Standards Press of China, 2011. (in Chinese)
    [23] EN 1993-1-4:2006+A1:2015, Eurocode 3:Design of steel structures-Part 1.4:General rules-Supplementary rules for stainless steels[S]. Brussels:European Committee for Standardization, 2015.
    [24] EN 1993-1-8, Eurocode 3:Design of steel structures -Part 1-8:Design of joints[S]. Brussels:European Committee for Standardization, 2005.
    [25] SEI/ASCE 8-02, Specification for the design of cold-formed stainless steel structural members[S]. New York:American Society of Civil Engineers (ASCE), 2002.
    [26] AISC, Steel construction manual, 14th ed[S]. Chicago:American Institute of Steel Construction, 2011.
    [27] JGJ 82-2011, 钢结构高强度螺栓连接技术规程[S]. 北京:中国建筑工业出版社, 2011. JGJ 82-2011, Technical specification for high strength bolt connections of steel structures[S]. Beijing:China Architecture & Building Press, 2011. (in Chinese) (上接第185页)
    [28] 姜忻良, 徐炳伟, 李竹. 土-桩-结构振动台模型试验相似理论及其实施[J]. 振动工程学报, 2010, 23(2):225-229. Jiang Xinliang, Xu Bingwei, Li Zhu. Similitude laws and its application in shaking table test of soil-pile-structure interaction system[J]. Journal of Vibration Engineering, 2010, 23(2):225-229. (in Chinese)
    [29] Li Y, Jiang X L. Parametric analysis of eccentric structure-soil interaction system based on branch mode decoupling method[J]. Soil Dynamics and Earthquake Engineering, 2013, 48(6):63-70.
    [30] 周惠蒙, 吴斌, 王涛, 等. 基于速度的显式等效力控制方法的研究[J]. 工程力学, 2016, 33(6):15-22. Zhou Huimeng, Wu Bin, Wang Tao, et al. Explicit equivalent force control method based on velocity[J]. Engineering Mechanics, 2016, 33(6):15-22. (in Chinese)
    [31] 唐贞云, 陈适才, 张金喜, 等. 基于振动台的实时动力子结构实验系统稳定性预测研究[J]. 工程力学, 2016, 33(12):217-224. Tang Zhenyun, Chen Shicai, Zhang Jinxi, et al. Study on the stability prediction of real-time dynamic substructure system based on shaking table[J]. Engineering Mechanics, 2016, 33(12):217-224. (in Chinese)
    [32] Tagawa Y, Tu J Y, Stoten D P. Inverse dynamics compensation via ‘simulation of feedback control systems’[J]. Proceedings of the Institution of Mechanical Engineers Part I Journal of Systems and Control Engineering, 2010, 225(1):137-153.
    [33] Guo J, Tang Z Y, Chen S, et al. Control strategy for the substructuring testing systems to simulate soil-structure interaction[J]. Smart Structures and Systems, 2016, 18(6):1169-1188.
  • 期刊类型引用(16)

    1. FENG Xian-dao,ZHANG Zuo-jin,FANG Hui,LI Hua-jun. Seismic Performance of a Circular Steel Tube-RC Structure with UHPC Grouted Filled. China Ocean Engineering. 2025(01): 111-124 . 必应学术
    2. 姜磊,刘永健,周绪红,陈宝春,牟廷敏,刘君平,陈洪明. 钢管混凝土组合结构桥梁设计原理与技术发展综述. 中国公路学报. 2025(03): 278-302 . 百度学术
    3. 杜国锋,曹煊,谢向东,张继承. 高强钢管超高性能混凝土界面黏结滑移性能试验. 河南理工大学学报(自然科学版). 2024(01): 180-188 . 百度学术
    4. 李俊华,王维宸,周春恒,陈志辉. 冻融循环环境下方钢管混凝土粘结强度试验研究. 工程力学. 2024(S1): 206-214 . 本站查看
    5. 冯先导,刘聪聪,林红星. 预制桩芯桩帽结构承载性能及安装工艺试验研究. 水运工程. 2024(11): 215-220 . 百度学术
    6. 朱张峰,RICHARD Liew,杜咏,姚兵. 装配式组合结构柱高强钢管连接节点界面黏结性能试验. 工业建筑. 2023(04): 120-124+179 . 百度学术
    7. 王占锋,谢东武. 超高强钢筋混凝土抗腐蚀性影响因素研究. 科技通报. 2022(01): 77-83 . 百度学术
    8. 廖栩,李吉人,王庆利. 轴压荷载下中空夹层钢管混凝土抗扭性能试验研究. 建筑结构. 2022(06): 90-96+125 . 百度学术
    9. 曾彦钦,徐礼华,吴方红,余敏,池寅. 钢管含粗骨料超高性能混凝土短柱轴压性能研究. 工程力学. 2022(10): 68-78 . 本站查看
    10. 王秋维,梁林,史庆轩,王朋. 方钢管超高性能混凝土界面黏结滑移性能. 湖南大学学报(自然科学版). 2022(11): 116-125 . 百度学术
    11. 程高,张之恒,谢亮,姬子田. 基于桁梁实桥试验的钢管混凝土界面传力机制. 交通运输工程学报. 2022(06): 158-168 . 百度学术
    12. 张萍. 水工建筑物超高强混凝土抗腐蚀性能的影响规律研究. 黑龙江水利科技. 2022(11): 35-39 . 百度学术
    13. 高春彦,原淼淼,王佳丽,孙凯琦,赵宁. 钢管UHPC界面粘结滑移力学性能研究. 建筑结构. 2022(S2): 1369-1374 . 百度学术
    14. 谢磊,李庆华,徐世烺. 冲击荷载下免蒸养活性粉末混凝土分形特征研究. 工程力学. 2021(03): 169-180 . 本站查看
    15. 廖栩,李吉人,王庆利. 压-扭作用下中空夹层钢管混凝土的破坏机理分析. 混凝土与水泥制品. 2021(12): 67-74 . 百度学术
    16. 陈宝春,李莉,罗霞,韦建刚,赖秀英,刘君平,丁庆军,李聪. 超高强钢管混凝土研究综述. 交通运输工程学报. 2020(05): 1-21 . 百度学术

    其他类型引用(23)

计量
  • 文章访问数:  458
  • HTML全文浏览量:  67
  • PDF下载量:  82
  • 被引次数: 39
出版历程
  • 收稿日期:  2017-12-26
  • 修回日期:  2018-07-07
  • 刊出日期:  2019-02-27

目录

    /

    返回文章
    返回