高温下混凝土动态压缩行为细观数值研究

金浏, 郝慧敏, 张仁波, 杜修力

金浏, 郝慧敏, 张仁波, 杜修力. 高温下混凝土动态压缩行为细观数值研究[J]. 工程力学, 2019, 36(6): 70-78,118. DOI: 10.6052/j.issn.1000-4750.2018.01.0041
引用本文: 金浏, 郝慧敏, 张仁波, 杜修力. 高温下混凝土动态压缩行为细观数值研究[J]. 工程力学, 2019, 36(6): 70-78,118. DOI: 10.6052/j.issn.1000-4750.2018.01.0041
JIN Liu, HAO Hui-min, ZHANG Ren-bo, DU Xiu-li. MESO-SCALE SIMULATIONS OF DYNAMIC COMPRESSIVE BEHAVIOR OF CONCRETE AT ELEVATED TEMPERATURE[J]. Engineering Mechanics, 2019, 36(6): 70-78,118. DOI: 10.6052/j.issn.1000-4750.2018.01.0041
Citation: JIN Liu, HAO Hui-min, ZHANG Ren-bo, DU Xiu-li. MESO-SCALE SIMULATIONS OF DYNAMIC COMPRESSIVE BEHAVIOR OF CONCRETE AT ELEVATED TEMPERATURE[J]. Engineering Mechanics, 2019, 36(6): 70-78,118. DOI: 10.6052/j.issn.1000-4750.2018.01.0041

高温下混凝土动态压缩行为细观数值研究

基金项目: 国家自然科学基金项目(51822801);国家重点研发计划专项项目(2016YFC0701100);国家重点基础研究发展计划(973计划)项目(2015CB058000)
详细信息
    作者简介:

    金浏(1985-),男,江苏泗阳人,教授,博士,主要从事混凝土及混凝土结构领域研究(E-mail:kinglew2007@163.com);郝慧敏(1994-),女,内蒙古乌兰察布人,硕士生,主要从事高温下混凝土动态力学行为研究(E-mail:hhummer123@163.com);张仁波(1989-),男,山东临邑人,博士生,主要从事混凝土结构抗火抗冲击行为研究(E-mail:zhangrenbo99@126.com).

    通讯作者:

    杜修力(1963-),男,四川广安人,长江学者特聘教授,博士,主要从事地震工程领域研究(E-mail:duxiuli@bjut.edu.cn).

  • 中图分类号: TU528.1;O347

MESO-SCALE SIMULATIONS OF DYNAMIC COMPRESSIVE BEHAVIOR OF CONCRETE AT ELEVATED TEMPERATURE

  • 摘要: 结合混凝土细观非均质性,考虑高温下细观组分力学性能退化效应及率效应的影响,建立了高温作用下混凝土动态压缩破坏行为及应变率效应研究的细观尺度数值分析模型。首先对混凝土热传导行为进行模拟,进而将"结果输出"作为"初始条件"对混凝土动态力学行为进行细观模拟,模拟与已有试验结果的良好吻合验证了数值方法的可行性及准确性。在此基础上,研究了高温加热后混凝土动态单轴压缩破坏行为及细观破坏机制,揭示了高温作用对动态压缩强度放大系数的影响规律。结果表明:高温加热后,混凝土动态冲击破坏集中在力学性能薄弱的加载端;相比于应变率效应,温度退化效应对混凝土力学性能(如强度、割线模量)影响更为显著。
    Abstract: A meso-scale numerical analysis model of concrete which studies the dynamic compression damage behavior and the strain rate effect at elevated temperature was established, which is combined with the meso-scale heterogeneity of concrete and considers the mechanical property degradation effect and the strain rate effect of micro-components at elevated temperature. In this approach, the heat conduction behavior was simulated initially, then the "result output" was used as "initial conditions", and the dynamic compressive behavior of concrete was conducted. The good agreement between the numerical simulation results and the experimental results indicates the feasibility and the reasonableness of the presented meso-scale approach. Subsequently, the dynamic uniaxial compression damage behavior and failure mechanism on the meso-scale of concrete at elevated temperature were studied. The influence regularity of high temperature on the dynamic compressive strength increase coefficient (CDIF) was revealed. The results indicate that the damage of concrete concentrates on the loading terminal with weak mechanical properties at elevated temperature. Furthermore, the temperature degradation effect on mechanical properties of concrete (such as strength and secant modulus) is more significant compared with the strain rate effect.
  • [1] 赵建魁, 方秦, 陈力, 等. 爆炸与火荷载联合作用下RC梁耐火极限的数值分析[J]. 天津大学学报(自然科学与工程技术版), 2015, 10(48):873-880. Zhao Jiankui, Fang Qin, Chen Li, et al. Numerical analysis of fire resistance of RC beams subjected to explosion and fire load[J]. Journal of Tianjin University (Science and Technology), 2015, 10(48):873-880. (in Chinese)
    [2] Watstein D. Effect of straining rate on the compressive strength and elastic properties of concrete[J]. ACI Journal Proceedings, 1953, 49(4):729-744.
    [3] 胡时胜, 王道荣, 刘剑飞. 混凝土材料动态力学性能的实验研究[J]. 工程力学, 2001, 18(5):115-118. Hu Shisheng, Wang Daorong, Liu Jianfei. Experimental study of dynamic mechanical behavior of concrete[J]. Engineering Mechanics, 2001, 18(5):115-118. (in Chinese)
    [4] Ma Q, Guo R, Zhao Z, et al. Mechanical properties of concrete at high temperature-A review[J]. Construction and Building Materials, 2015, 93:371-383.
    [5] Nassif A. Postfire full stress-strain response of fire-damaged concrete[J]. Fire and Materials, 2006, 30(5):323-332.
    [6] 李亮, 李彦. 基于热力学原理的混凝土热-力耦合本构模型[J]. 北京工业大学学报, 2016, 42(4):554-560. Li Liang, Li Yan. Thermo-mechanical coupling constitutive model of concrete based on thermodynamics[J]. Journal of Beijing University of Technology, 2016, 42(4):554-560. (in Chinese)
    [7] 沈玲华, 王激扬, 徐世烺, 等. 不同胶凝材料的精细混凝土高温后力学性能[J]. 工程力学, 2015, 32(增刊1):248-253, 260. Shen Linghua, Wang Jiyang, Xushilang, et al. Mechanical property of fine grained concrete with different cementing material after exposure to high-temperature[J]. Engineering Mechanics, 2015, 32(Suppl 1):248-253, 260. (in Chinese)
    [8] Willam K, Rhee I, Xi Y. Thermal degradation of heterogeneous concrete materials[J]. ASCE Journal of Materials in Civil Engineering, 2005, 17(3):276-285.
    [9] Xotta G, Mazzucco G, Salomoni V A, et al. Composite behavior of concrete materials under high temperatures[J]. International Journal of Solids and Structures, 2015, 64/65:86-99.
    [10] 陶俊林, 秦李波, 李奎, 等. 混凝土高温动态压缩力学性能实验[J]. 爆炸与冲击, 2011, 31(1):101-106. Tao Junlin, Qin Libo, Li Kui, et al. Experiment of dynamic compressive behaviour of concrete at high temperature[J]. Explosion and Shock Waves, 2011, 31(1):101-106. (in Chinese)
    [11] 刘传雄, 李玉龙, 吴子燕, 等. 高温后混凝土材料的动态压缩力学性能[J]. 土木工程学报, 2011, 44(4):78-83. Liu Chuanxiong, Li Yulong, Wu Ziyan, et al. Dynamic compression behavior of heated concrete[J]. China Civil Engineering Journa, 2011, 44(4):78-83. (in Chinese)
    [12] 何远明, 霍静思, 陈柏生, 等. 高温下混凝土SHPB动态力学性能试验研究[J]. 工程力学, 2012, 29(09):200-208. He Yuanming, Huo Jingsi, Chen Bosheng, et al. Impact tests on dynamic behavior of concrete at elevated temperatures[J]. Engineering Mechanics, 2012, 29(9):200-208. (in Chinese)
    [13] 许金余, 刘健, 李志武, 等. 高温中与高温后混凝土的冲击力学特性[J]. 建筑材料学报, 2013, 16(1):1-5. Xu Jinyu, Liu Jian, Li Zhiwu, et al. Impact mechanical properties of concrete at and after exposure to high temperature[J]. Journal of Building Materials, 2013, 16(1):1-5. (in Chinese)
    [14] 王宇涛, 刘殿书, 李胜林, 等. 高温后混凝土静动态力学性能试验研究[J]. 振动与冲击, 2014, 33(20):16-19. Wang Yutao, Liu Dianshu, Li Shenglin, et al. Static and dynamic mechanical properties of concrete after high temperature treatment[J]. Journal of Vibration and Shock, 2014, 33(20):16-19. (in Chinese)
    [15] 李志卫, 肖建庄, 谢青海. 高温后高强混凝土受压动态损伤[J]. 工程力学, 2017, 34(2):78-84. Li Zhiwei, Xiao Jianzhuang, Xie Qinghai. Compressive dynamic damage of high-strength concrete after elevated temperatures[J]. Engineering Mechanics, 2017, 34(2):78-84. (in Chinese)
    [16] Du X, Jin L, Ma G. Numerical simulation of dynamic tensile-failure of concrete at meso-scale[J]. International Journal of Impact Engineering, 2014, 66(4):5-17.
    [17] 漆雅庆. 火灾下钢筋混凝土构件的非线性有限元分析研究[D]. 广州:华南理工大学, 2011. Qi Yaqing. Nonlinear finite element analysis research of reinforced concrete structure in fire[D]. Guangzhou:South China University of Technology, 2011. (in Chinese)
    [18] Grassl P, Pearce C. Mesoscale approach to modeling concrete subjected to thermomechanical loading[J]. Journal of Engineering Mechanics, 2010, 136(3):322-328.
    [19] Jin L, Zhang R, Du X. Characterization of the temperature-dependent heat conduction in heterogeneous concretes[J]. Magazine of Concrete Research, 2017, 70(7):325-339.
    [20] Comite Euro-International D B. CEB-FIP model code 1990[S]. Trowbridge, Wiltshire, UK:Redwood Books, 1993.
    [21] Khan M I. Factors affecting the thermal properties of concrete and applicability of its prediction models[J]. Building & Environment, 2002, 37(6):607-614.
    [22] Vosteen H D, Schellschmidt R. Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock[J]. Physics & Chemistry of the Earth, 2003, 28(9):499-509.
    [23] ČErný R, Maděra J, Poděbradská J, et al. The effect of compressive stress on thermal and hygric properties of Portland cement mortar in wide temperature and moisture ranges[J]. Cement & Concrete Research, 2000, 30(8):1267-1276.
    [24] 李凌志. 火灾后混凝土材料力学性能与温度、时间的关系[D]. 上海:同济大学, 2006. Li Lingzhi. Research of the relation between mechanics performance of concrete material after fire and temperature & time[D]. Shanghai:Tongji University, 2006. (in Chinese)
    [25] Zhai C, Chen L, Xiang H, et al. Experimental and numerical investigation into RC beams subjected to blast after exposure to fire[J]. International Journal of Impact Engineering, 2016, 97:29-45.
    [26] 朱合华, 闫治国, 邓涛, 等. 3种岩石高温后力学性质的试验研究[J]. 岩石力学与工程学报, 2006, 25(10):1945-1950. Zhu Hehua, Yan Zhiguo, Deng Tao. et al. Testing study on mechanical properties of tuff, graniteand and breccia after high temperatures[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(10):1945-1950. (in Chinese)
    [27] 邱一平, 林卓英. 花岗岩样品高温后损伤的试验研究[J]. 岩土力学, 2006, 27(6):1005-1010. Qiu Yiping, Lin Zhuoying. Testing study on damage of granite samples after high temperature[J]. Rock and Soil Mechanics, 2006, 27(6):1005-1010. (in Chinese)
    [28] Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures[J]. ASCE Journal of Engineering Mechanics, 1998, 124(8):892-900.
    [29] International Organization for Standardization. ISO834-1 Fire Resistance Test on Elements of Building Construction[S]. 1999.
    [30] Zhai C, Chen L, Fang Q, et al. Experimental study of strain rate effects on normal weight concrete after exposure to elevated temperature[J]. Materials & Structures, 2017, 50:40.
    [31] 艾晓芹. 混凝土高温后静动态力学性能研究[D]. 西安:长安大学, 2015. Ai Xiaoqin. The static and dynamic mechanical properties of concrete after high temperature[D]. Xi'an:Chang'an University, 2015. (in Chinese)
    [32] Ren W, Xu J, Su H. Dynamic compressive behaviour of concrete after exposure to elevated temperatures[J]. Materials & Structures, 2016, 49(8):3321-3334.
    [33] Li Q M, Meng H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test[J]. International Journal of Solids and Structures, 2003, 40(2):343-360.
    [34] 贾彬. 混凝土高温静动力学特性研究[D]. 重庆:重庆大学, 2011. Jia Bin. Static and dynamic mechanical behavior of concrete at elevated temperature[D]. Chongqing:Chongqing University, 2011. (in Chinese)
  • 期刊类型引用(12)

    1. 胡鹏华,张文津,胡晓华,金华建,贾宝莹,李相辰,李云. 大跨度钢结构施工过程的数值模拟与二次开发. 建筑钢结构进展. 2025(01): 106-113 . 百度学术
    2. 王锦涛,刘宇飞,樊健生,周勐,聂建国,强安鹏,周照飞. 大跨斜腿钢管桁架结构日照非均匀温度场研究. 工程力学. 2024(01): 208-218 . 本站查看
    3. 樊健生,魏晓晨,宋神友,金文良,苏宗贤,刘宇飞. 深中通道钢壳-混凝土组合沉管浇筑变形研究. 工程力学. 2024(05): 167-178 . 本站查看
    4. 万华平,胡鹏华,刘玄,张文杰,秦凯,罗尧治. 北京大兴国际机场航站楼风场和风压特性实测. 建筑结构学报. 2024(07): 120-130 . 百度学术
    5. 柳子通,纪晗,肖志杨,谢鹏宇,沈伟,常珂. 钟祥市文化综合体项目科技馆结构设计. 建筑结构. 2024(17): 36-41 . 百度学术
    6. 李惠宏,张印,陈锐,单体钧,杜颜胜. 高原环境下大跨空间网架结构日照非均匀温度效应研究. 河南科学. 2024(09): 1290-1297 . 百度学术
    7. 朱颖,郭辉,孙大奇,双妙. 铁路钢桁梁悬索桥日照时空非均匀温度场及其效应精细化分析. 工程力学. 2024(12): 80-94 . 本站查看
    8. 姜守芳,李会军,龙婷婷. 考虑节点偏差、杆件缺陷与偏心的单层三向柱面网壳稳定性研究. 工程力学. 2022(02): 178-188 . 本站查看
    9. 樊健生,王琛,宋凌寒. 土木工程智能计算分析研究进展与应用. 建筑结构学报. 2022(09): 1-22 . 百度学术
    10. 马强,沈文爱,陈潘,万华平. 国家体育场日照非均匀温度效应模拟. 土木工程与管理学报. 2022(04): 137-144 . 百度学术
    11. 李玉学,冯励睿,李海云,田玉基. 大跨屋盖结构脉动风振响应特性预测方法研究. 工程力学. 2021(07): 159-166+182 . 本站查看
    12. 李震,于跃,于今,郝宇超,万涛. 生物质热压成型温度场离散元模拟. 锻压技术. 2021(07): 100-105 . 百度学术

    其他类型引用(13)

计量
  • 文章访问数:  452
  • HTML全文浏览量:  47
  • PDF下载量:  106
  • 被引次数: 25
出版历程
  • 收稿日期:  2018-01-15
  • 修回日期:  2018-08-05
  • 刊出日期:  2019-06-24

目录

    /

    返回文章
    返回