地震作用下深厚土层-结构相互作用的高效分析方法

赵密, 高志懂, 杜修力, 王君杰

赵密, 高志懂, 杜修力, 王君杰. 地震作用下深厚土层-结构相互作用的高效分析方法[J]. 工程力学, 2019, 36(10): 58-65. DOI: 10.6052/j.issn.1000-4750.2018.04.0245
引用本文: 赵密, 高志懂, 杜修力, 王君杰. 地震作用下深厚土层-结构相互作用的高效分析方法[J]. 工程力学, 2019, 36(10): 58-65. DOI: 10.6052/j.issn.1000-4750.2018.04.0245
ZHAO Mi, GAO Zhi-dong, DU Xiu-li, WANG Jun-jie. EFFICIENT ANALYSIS SCHEME FOR SEISMIC SOIL-STRUCTURE INTERACTION WITH DEEP SOIL LAYER[J]. Engineering Mechanics, 2019, 36(10): 58-65. DOI: 10.6052/j.issn.1000-4750.2018.04.0245
Citation: ZHAO Mi, GAO Zhi-dong, DU Xiu-li, WANG Jun-jie. EFFICIENT ANALYSIS SCHEME FOR SEISMIC SOIL-STRUCTURE INTERACTION WITH DEEP SOIL LAYER[J]. Engineering Mechanics, 2019, 36(10): 58-65. DOI: 10.6052/j.issn.1000-4750.2018.04.0245

地震作用下深厚土层-结构相互作用的高效分析方法

基金项目: 国家973计划项目课题项目(2015CB057902);国家自然科学基金项目(51421005,51678015)
详细信息
    作者简介:

    高志懂(1992-),男,山东人,硕士生,主要从事重大工程抗震研究(E-mail:gaozhidong@emails.bjut.edu.cn);杜修力(1963-),男,四川人,教授,博士,主要从事地震工程学研究工作(E-mail:duxiuli@bjut.edu.cn);王君杰(1962-),男,辽宁人,教授,博士,主要从事桥梁抗震和桥梁船撞研究(E-mail:jjwang@tongji.edu.cn).

    通讯作者:

    赵密(1980-),男,吉林人,教授,博士,主要从事重大工程抗震研究(E-mail:zhaomi@bjut.edu.cn).

  • 中图分类号: TU435

EFFICIENT ANALYSIS SCHEME FOR SEISMIC SOIL-STRUCTURE INTERACTION WITH DEEP SOIL LAYER

  • 摘要: 基于黏弹性边界和将场地反应转化为等效地震荷载的有限元直接法是目前进行地震作用下土-结构相互作用分析的常用时程分析方法之一。当土层厚度较深时,整个深厚土层-结构系统的有限元模型自由度数目较多,尤其对于三维问题,计算效率低。该文提出一种高效分析方法,即一维场地反应分析仍然针对整个深厚土层,在后续的土-结构相互作用分析中将土-结构计算模型的底面人工边界从深厚土层底面(基岩面)向上移动到接近结构的位置,通过缩减土-结构相互作用模型尺寸来提高计算效率。采用理论分析与数值算例,通过与采用整个深厚土层的传统土-结构相互作用分析结果对比,说明提出的高效分析方法能够满足精度要求,并且给出底面人工边界位置以及边界条件和地震动输入方式的建议。
    Abstract: The direct finite element method is a widely used time history method for seismic soil-structure interaction (SSI) analysis. In this method, the viscous-spring boundary condition is used to model the radiation damping of infinite domain, and the seismic site response is transformed into the equivalent loading. When the soil layer is extraordinary thick, the computational efficiency of seismic SSI analysis especially for three-dimensional problem is very low due to the finite element model of the whole deep soil layer. In this paper, an efficient analysis scheme is developed. In which, the one-dimensional site response analysis is still performed for the whole deep soil layer, and subsequently the bottom artificial boundary of SSI model is moved up from the actual soil layer bottom (bedrock surface) to the location sufficiently near the structure. The theoretical analyses and numerical examples are presented to indicate the accuracy and efficiency of the proposed efficient analysis scheme. The different boundary treatments and seismic inputs at different locations of the moved bottom boundary are compared with the finite element model of the whole deep soil layer. The proposed scheme meets the precision requirements, and some suggestions on artificial boundary treatment and location are given.
  • [1] Wolf J P. Dynamic soil-structure interaction[M]. New Jersey:Prentice Hall, 1985.
    [2] Wolf J P. Soil-structure-interaction analysis in time domain[M]. New Jersey:Prentice Hall, 1988.
    [3] Lysmer J, Wass G. Shear waves in plane infinite structures[J]. Journal of Engineering Mechanics, 1972, 98(1):85-105.
    [4] Lysmer J, Udaka T, Tsai C, et al. FLUSH, a computer program for approximate 3-D analysis of soil-structure interaction problems[R]. Earthquake Engineering Research Center, University of California Berkeley, 1975.
    [5] Wolf J P. The scaled boundary finite element method[M]. New York:John Wiley & Sons Inc., 2003.
    [6] Zhao M, Wu L H, Du X L, et al. Stable high-order absorbing boundary condition based on new continued fraction for scalar wave propagation in unbounded multilayer media[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 334:111-137.
    [7] Zhao M, Li H F, Du X L, et al. Time-domain stability of artificial boundary condition coupled with finite element for dynamic and wave problems in unbounded media[J]. International Journal of Computatioanal Methods, 2018, 15(3):1850099.
    [8] 赵密, 杜修力, 刘晶波. 一种高阶精度人工边界条件:出平面外域波动问题[J]. 工程力学, 2012, 29(4):7-14. Zhao Mi, Du Xiuli, Liu Jingbo. A high-order accurate artificial boundary condition:Out-of-plane extreior wave problem[J]. Engineering Mechanics, 2012, 29(4):7-14. (in Chinese)
    [9] Zhao M, Du X L, Liu J B, et al. Explicit finite element artificial boundary scheme for transient scalar waves in two-dimensional unbounded waveguide[J]. International Journal for Numerical Methods in Engineering, 2011, 87(11):1074-1104.
    [10] Lysmer J, Kuhlemeyer R L. Finite dynamic model for infinite media[J]. Journal of the Engineering Mechanics Division, 1969, 95(4):859-878.
    [11] FLAC. (fast Lagrangian analysis of continua) Version 2.10, users manual[R]. Itasca Consulting Group, Inc., 2002.
    [12] Brinkgreve R B J, Vermeer P A. Finite element code for soil and rock analysis[M]. Rotterdan A. A. Balkema, 1998.
    [13] Du X L. Zhao M. A local time-domain transmitting boundary for simulating cylindrical elastic wave propagation in infinite media[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(10):937-946.
    [14] 杜修力, 赵密, 王进廷. 近场波动模拟的人工应力边界条件[J]. 力学学报, 2006, 38(1):49-56. Du Xiuli, Zhao Mi, Wang Jinting. A stress artificial boundary in for near-field wave problem[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1):49-56. (in Chinese)
    [15] 刘晶波, 王振宇, 杜修力, 等. 波动问题中的三维时域粘弹性人工边界[J]. 工程力学, 2005, 22(6):46-51. Liu Jingbo, Wang Zhenyu, Du Xiuli, at al. Three-dimensional visco-elastic artificial boundaries in time domain for wave motion problems[J]. Engineering Mechanics, 2005, 22(6):46-51. (in Chinese)
    [16] 刘晶波, 吕彦东. 结构-地基动力相互作用问题分析的一种直接方法[J]. 土木工程学报, 1998, 31(3):55-64. Liu Jingbo, Lü Yandong. A direct method for analysis of dynamic soil-structure interaction[J]. China Civil Engineering Journal, 1998, 31(3):55-64. (in Chinese)
    [17] Zhao M, Gao Z D, Wang L T, et al. Obliquely incident earthquake input for soil-structure interaction in layered half space[J]. Earthquakes and Structures, 2017, 13(6):573-588.
    [18] 包锐, 周叮, 刘伟庆, 等. 粘弹性人工边界及其在盆地地震效应研究中的应用[J]. 世界地震工程, 2013, 29(4):133-140. Bao Rui, Zhou Ding, Liu Weiqing, at al. Viscous-spring artificial boundary and its application to study on seismic effect of basin[J]. World Information on Earthquake Engineering, 2013, 29(4):133-140. (in Chinese)
    [19] 陈灯红, 杜成斌, 苑举卫. 基于ABAQUS的粘弹性边界单元及在重力坝抗震分析中的应用[J]. 世界地震工程, 2010, 26(3):127-132. Chen Denghong, Du Chengbin, Yuan Juwei. Viscous-spring boundary element based on ABAQUS and application to dynamic analysis of agravity dam[J]. World Information on Earthquake Engineering, 2010, 26(3):127-132. (in Chinese)
    [20] 杜修力, 赵密. 基于黏弹性边界的拱坝地震反应分析方法[J]. 水利学报, 2006, 37(9):1063-1069. Du Xiuli, Zhao Mi. Analysis method for seismic response of arch dams in time domain based on viscous-spring artificial boundary condition[J]. Journal of Hydraulic Engineering, 2006, 37(9):1063-1069. (in Chinese)
    [21] 黄景琦, 杜修力, 田志敏, 等. 斜入射SV波对地铁车站地震响应的影响[J]. 工程力学, 2014, 31(9):81-88. Huang Jingqi, Du Xiuli, Tian Zhimin, et al. Effect of the oblique incidence of seismic SV waves on the seismic response of subway station structure[J]. Engineering Mechanics, 2014, 31(9):81-88. (in Chinese)
    [22] 杜修力, 李洋, 赵密, 等. 下卧刚性基岩条件下场地土-结构体系地震反应分析方法研究[J]. 工程力学, 2017, 34(5):52-59. Du Xiuli, Li Yang, Zhao Mi, et al. Seismic response analysis method for soil-structure interaction system of underlying rigid rock base soil condition[J]. Engineering Mechanics, 2017, 34(5):52-59. (in Chinese)
    [23] 赵密, 王利涛, 高志懂, 等. 土-结构相互作用分析中几类地震动输入方式的比较[J]. 震灾防御技术, 2017, 12(3):589-598. Zhao Mi, Wang Litao, Gao Zhidong, et al. Comparison of earthquake input methods for soil-structure interaction analysis[J]. Technology for Earthquake Disaster Prevention, 2017, 12(3):589-598. (in Chinese)
  • 期刊类型引用(1)

    1. 刘一诺,柴晓兵,孙一飞,褚泽楷,翟艳磊,贾娅娅,刘庆宽. 防风网对煤棚表面风荷载影响试验研究. 工程力学. 2025(S1): 105-110 . 本站查看

    其他类型引用(1)

计量
  • 文章访问数:  489
  • HTML全文浏览量:  29
  • PDF下载量:  130
  • 被引次数: 2
出版历程
  • 收稿日期:  2018-04-16
  • 修回日期:  2018-07-23
  • 刊出日期:  2019-10-24

目录

    /

    返回文章
    返回