超高性能混凝土梁正截面受弯承载力理论研究

徐明雪, 梁兴文, 汪萍, 王照耀

徐明雪, 梁兴文, 汪萍, 王照耀. 超高性能混凝土梁正截面受弯承载力理论研究[J]. 工程力学, 2019, 36(8): 70-78. DOI: 10.6052/j.issn.1000-4750.2018.06.0307
引用本文: 徐明雪, 梁兴文, 汪萍, 王照耀. 超高性能混凝土梁正截面受弯承载力理论研究[J]. 工程力学, 2019, 36(8): 70-78. DOI: 10.6052/j.issn.1000-4750.2018.06.0307
XU Ming-xue, LIANG Xing-wen, WANG Ping, WANG Zhao-yao. THEORETICAL INVESTIGATION ON NORMAL SECTION FLEXURAL CAPACITY OF UHPC BEAMS[J]. Engineering Mechanics, 2019, 36(8): 70-78. DOI: 10.6052/j.issn.1000-4750.2018.06.0307
Citation: XU Ming-xue, LIANG Xing-wen, WANG Ping, WANG Zhao-yao. THEORETICAL INVESTIGATION ON NORMAL SECTION FLEXURAL CAPACITY OF UHPC BEAMS[J]. Engineering Mechanics, 2019, 36(8): 70-78. DOI: 10.6052/j.issn.1000-4750.2018.06.0307

超高性能混凝土梁正截面受弯承载力理论研究

基金项目: 国家自然科学基金项目(51278402)
详细信息
    作者简介:

    徐明雪(1991-),男,江苏人,硕士生,主要从事土木工程新材料结构应用研究(E-mail:Xumingxue1991@163.com);汪萍(1992-),女,安徽人,硕士生,主要从事土木工程新材料结构应用研究(E-mail:337565854@qq.com);王照耀(1992-),男,陕西人,硕士生,主要从事土木工程新材料结构应用研究(E-mail:wangzhaoyao1992@163.com).

    通讯作者:

    梁兴文(1952-),男,陕西人,教授,硕士,博导,主要从事土木工程新材料及其应用研究(E-mail:liangxingwen2000@163.com).

  • 中图分类号: TU375.1

THEORETICAL INVESTIGATION ON NORMAL SECTION FLEXURAL CAPACITY OF UHPC BEAMS

  • 摘要: 基于64组超高性能混凝土(ultra high performance concrete, UHPC)抗压性能试验数据,分别建立了峰值压应变ε0、立方体抗压强度fcu与轴心抗压强度fc之间的关系以及弹性模量Ec与立方体抗压强度fcu的关系;基于复合材料力学,建立了受拉区UHPC等效拉应力;基于平截面假定,建立了UHPC梁正截面受弯承载力计算公式,推导了受压区等效矩形应力图形参数、计算公式,并结合UHPC受压本构确定等效矩形应力图形参数。通过28根试验梁的相关数据,验证UHPC梁正截面受弯承载力计算公式及等效矩形应力图形参数取值的可行性。研究结果表明,等效矩形应力图形参数取值较为合理,梁正截面受弯承载力计算值与试验值吻合良好。
    Abstract: The relationships among peak compressive strain, cube compressive strength, elastic modulus, and axial compressive strength were established respectively based on 64 groups of Ultra High Performance Concrete (UHPC) compressive test data. The equivalent tensile strength of UHPC in the tensile zone was deduced through the mechanics of composite materials. Based on the plane section assumption, the formula for calculating normal-section flexural capacity of UHPC beams and the parameters of an equivalent rectangular stress block of UHPC in the compressive zone were deduced and the equivalent rectangular strength was calculated with the UHPC compressive constitutive relationship. Based on the data of 28 test beams, the feasibility of calculating the flexural capacity and the parameters of equivalent rectangular stress block was verified. The results show that the parameters of an equivalent rectangular stress block are reasonable and the calculated results of the normal-section flexural capacity of UHPC beams are in a good agreement with the experimental ones.
  • [1] Rossi P. Ultra high performance fiber reinforced concretes[J]. Concrete International, 2001, 23(6):1216-1221.
    [2] Voo Y L, Foster S J. Characteristics of ultra high performance "ductile" concrete and its impact on sustainable construction[J]. Ies Journal Part A Civil & Structural Engineering, 2010, 3(3):168-187.
    [3] Makita T, Brühwiler E. Tensile fatigue behaviour of ultra-high performance fibre reinforced concrete (UHPFRC)[J]. Materials & Structures, 2014, 47(3):475-491.
    [4] Yi N H, Kim J H J, Han T S, et al. Blast-resistant characteristics of ultra-high strength concrete and reactive powder concrete[J]. Construction & Building Materials, 2012, 28(1):694-707.
    [5] 邓明科, 卜新星, 潘姣姣, 等. 型钢高延性混凝土短柱抗震性能试验研究[J]. 工程力学, 2017, 34(1):163-170. Deng Mingke, Bu Xinxing, Pan Jiaojiao, et al. Experimental study on seismic behavior of steel reinforced high ductile concrete short columns[J]. Engineering Mechanics, 2017, 34(1):163-170. (in Chinese)
    [6] 赖建中, 朱耀勇, 谭剑敏. 超高性能混凝土在埋置炸药下的抗爆试验及数值模拟[J]. 工程力学, 2016, 33(5):193-199. Lai Jianzhong, Zhu Yaoyong, Tan Jianmin. Experimental and simulation of ultra-high performance concrete subjected to blast by embedded explosive[J]. Engineering Mechanics, 2016, 33(5):193-199. (in Chinese)
    [7] 郑文忠, 卢姗姗, 李莉. GFRP筋活性粉末混凝土梁受力性能试验研究[J]. 建筑结构学报, 2011, 32(6):115-124. Zheng Wenzhong, Lu Shanshan, Li Li. Experimental research on mechanical performance of reactive powder concrete beams reinforced with GFRP bars[J]. Journal of Building Structures, 2011, 32(6):115-124. (in Chinese)
    [8] 李莉. 活性粉末混凝土梁受力性能及设计方法研究[D]. 哈尔滨:哈尔滨工业大学, 2010. Li Li. Mechanical behavior and design method for reactive powder concrete beams[D]. Harbin:Harbin Institute of Technology, 2010. (in Chinese)
    [9] 王文雷. RPC预应力梁相关设计参数研究[D]. 北京:北京交通大学, 2006. Wang Wenlei. Investigation on design parameters of RPC prestressed beam[D]. Beijing:Beijing Jiaotong University, 2006. (in Chinese)
    [10] 金凌志, 何来, 吴欣珂. HRB500级钢筋活性粉末混凝土梁受弯性能试验研究[J]. 建筑结构, 2015, 45(15):87-92. Jin Lingzhi, He Lai, Wu Xinke. Experimental study on flexural property of reactive powder concrete beams with HRB500 steel[J]. Building Structure, 2015, 45(15):87-92. (in Chinese)
    [11] Singh M, Sheikh A H, Ali M S M, et al. Experimental and numerical study of the flexural behaviour of ultra-high performance fibre reinforced concrete beams[J]. Construction & Building Materials, 2017, 138(Complete):12-25.
    [12] 杨志慧. 不同钢纤维掺量活性粉末混凝土的抗拉力学特性研究[D]. 北京:北京交通大学, 2006. Yang Zhihui. Investigation on tensile properties of reactive powder concrete with different content of steel fiber[D]. Beijing:Beijing Jiaotong University, 2006. (in Chinese)
    [13] 金凌志, 李月霞, 付强. 不同掺合料掺量的活性粉末混凝土抗压强度试验[J]. 河南科技大学学报(自然科学版), 2014(5):55-62. Jin Lingzhi, Li Yuexia, Fu Qiang. Experimental study on compressive strength of Reactive Powder Concrete with different additives[J]. Journal of Henan University of Science and Technology (Natural Science), 2014(5):55-62. (in Chinese)
    [14] 曾建仙, 吴炎海, 林清. 掺钢纤维活性粉末混凝土的受压力学性能研究[J]. 福州大学学报(自然科学版), 2005, 33(增刊1):132-137. Zeng Jianxian, Wu Yanhai, Lin Qing. Researches on the compressive mechanics properties of steel fiber RPC[J]. Journal of Fuzhou University (Natural Science), 2005, 33(suppl 1):132-137. (in Chinese)
    [15] 焦楚杰, 孙伟, 秦鸿根, 等. 钢纤维高强混凝土单轴受压本构方程[J]. 东南大学学报(自然科学版), 2004, 34(3):366-369. Jiao Chujie, Sun Wei, Qin Honggen, et al. Constitutive equation of SFRHSC under uniaxial compression[J]. Journal of Southeast University (Natural Science Edition), 2004, 34(3):366-369. (in Chinese)
    [16] 吴炎海, 何雁斌, 杨幼华. 活性粉末混凝土(RPC200)的力学性能[J]. 福州大学学报(自然科学版), 2003, 31(5):598-602. Wu Yanhai, He Yanbin, Yang Youhua. Investigation on RPC200 mechanical performance[J]. Journal of Fuzhou University (Natural Science), 2003, 31(5):598-602. (in Chinese)
    [17] 徐朦. 多种钢纤维对超高性能混凝土力学性能影响的比较研究[D]. 北京:北京交通大学, 2014. Xu Meng. Comparative study on influences of various steel fibers on mechanical properties of ultra-high performance concrete(UHPC)[D]. Beijing:Beijing Jiaotong University, 2014. (in Chinese)
    [18] GB 50010-2010,混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50010-2010, Code for design of concrete structures[S]. Beijing:China Architecture Industry Press, 2010. (in Chinese)
    [19] Hognestad E. Concrete stress distribution in ultimate strength design[J]. Journal of the American Concrete Institute, 1955, 52(6):455-479.
    [20] Jones R M, Bert C W. Mechanics of composite materials[M]. Blacksburg:Scripta Book Co, 1975.
    [21] 李志武, 许金余, 张国喜, 等. 利用纤维增强机理对纤维临界体积率的理论推导[C]//海峡两岸三地混凝土技术研讨会. 南京:东南大学出版社, 2010. Li Zhiwu, Xu Jinyu, Zhang Guoxi, et al. The theoretical deduction of critical fiber volume quantity using the mechanism of fiber reinforced concrete[C]//Seminar on Concrete Technology in Three Places Across the Taiwan Straits. NanJing:Southeast University Press, 2010. (in Chinese)
    [22] Abrishambaf A, Pimentel M, Nunes S. Influence of fibre orientation on the tensile behaviour of ultra-high performance fibre reinforced cementitious composites[J]. Cement & Concrete Research, 2017, 97:28-40.
    [23] Ali H M, Hamad L N T. First diagonal cracking and ultimate shear of reactive powder concrete T-beams without stirrups[J]. Journal of Engineering and Development, 2014, 18(5):149-164.
    [24] Al-Hassani H M, Khalil W I, Danha L S. Prediction of the nominal bending moment capacity for plain and singly reinforced rectangular RPC beam sections[J]. Engineering and Technology Journal, 2015, 33(5):1113-1130.
    [25] 邓宗才, 王义超, 肖锐, 等. 高强钢筋UHPC梁抗弯性能试验研究与理论分析[J]. 应用基础与工程科学学报, 2015, 23(1):68-78. Deng Zongcai, Wang Yichao, Xiao Rui, et al. Flexural test and theoretical analysis of UHPC beams with high strength rebars[J]. Journal of Basic Science and Engineering, 2015, 23(1):68-78. (in Chinese)
    [26] 曹霞, 常婧, 王艳俊. 高强钢筋RPC梁受弯构件正截面承载力试验研究[J]. 河南理工大学学报(自然科学版), 2015, 34(1):109-115. Cao Xia, Chang Jing, Wang Yanjun. Experimental study on flexural capacity of normal section of high strength reinforced reactive powder concrete beam[J]. Journal of Henan Polytechnic University (Natural Science), 2015, 34(1):109-115. (in Chinese)
  • 期刊类型引用(28)

    1. 王朋,尤学辉,史庆轩,陶毅,戎翀,黄杰. UHPC免拆模板钢筋混凝土柱抗震性能参数分析及承载力计算. 建筑科学与工程学报. 2025(01): 41-50 . 百度学术
    2. 王彦朋,张恒,聂晓梅,张芳芳. GFRP筋超高性能混凝土梁受弯性能有限元分析. 混凝土与水泥制品. 2025(02): 63-69 . 百度学术
    3. 王朋,尤学辉,黄杰,史庆轩,陶毅,王秋维. 拼接成型UHPC免拆模板钢筋混凝土柱的抗震性能. 哈尔滨工业大学学报. 2024(01): 103-116 . 百度学术
    4. 姜立春,李金柱. 倾斜矿体采空区非对称顶板-矿柱结构体协同承载机理. 中国有色金属学报. 2024(01): 329-343 . 百度学术
    5. 秦朝刚,吴涛,刘伯权,王博,李寓. 预制UHPC-RAC组合梁受弯性能试验与理论计算. 复合材料学报. 2024(03): 1420-1435 . 百度学术
    6. 王佳玮,孟醒. UHPC梁极限承载力计算方法研究. 城市建设理论研究(电子版). 2024(11): 78-80 . 百度学术
    7. 卜良桃,刘港平. RPC应力-应变曲线系数与塑性损伤因子无量纲化计算模型研究. 工程力学. 2024(05): 120-133 . 本站查看
    8. 秦朝刚,杜锦霖,吴涛,刘伯权. U型UHPC与再生混凝土组合梁受弯性能分析. 建筑科学. 2024(03): 110-120 . 百度学术
    9. 许有胜,杨纪豪,夏樟华,孙康平. UHPC预制拼装综合管廊的抗弯性能试验. 福州大学学报(自然科学版). 2024(03): 353-361 . 百度学术
    10. 常亚峰,尹文哲,侯亚鹏,曹小杉,师俊平,梁兴文. 超高性能混凝土预制板-叠合剪力墙抗震性能研究. 地震工程与工程振动. 2024(03): 96-107 . 百度学术
    11. 孙永新,蔺鹏臻,杨子江. 考虑黏结-滑移效应的UHPC梁钢筋应力计算方法. 西南交通大学学报. 2024(05): 1058-1067 . 百度学术
    12. 邓明科,姚昕,张阳玺,靳梦娜,曹继涛. 基于梁式试验的UHPC-高强钢筋搭接黏结性能. 复合材料学报. 2024(10): 5527-5539 . 百度学术
    13. 孙永新,蔺鹏臻,杨子江,冀伟. 考虑黏结-滑移效应的UHPC梁裂缝宽度计算方法. 吉林大学学报(工学版). 2024(09): 2600-2608 . 百度学术
    14. 李艳艳,贾会斌,赵川,武凯,刘平,苑宗双. 超低能耗建筑夹芯保温墙板受弯性能试验研究. 建筑科学. 2024(11): 9-18 . 百度学术
    15. 刘祖强,任甭优,薛建阳. 高强型钢超高性能混凝土梁受弯性能试验研究及有限元分析. 工程力学. 2023(04): 102-115 . 本站查看
    16. 刘晓银,曹锋. 第二类T形截面梁配筋设计的尺寸效应研究. 甘肃科技纵横. 2023(03): 59-62+87 . 百度学术
    17. 王凌波,陈杰,杨永清,朱钊,孙宝林,舒灏. 双折线先张预应力高强混凝土Ⅰ型梁抗弯性能足尺模型试验. 中国公路学报. 2023(07): 169-179 . 百度学术
    18. 李新星,周泉,李水生. 基于UHPC-钢筋错位连接的预制装配式混凝土梁抗弯性能研究. 混凝土与水泥制品. 2023(09): 47-53 . 百度学术
    19. 赵盛杰,张运清,孙涛. 非一致性收缩徐变对小箱梁桥腹板竖向开裂的影响. 山东交通学院学报. 2023(04): 122-126+162 . 百度学术
    20. 蔺鹏臻,赵鸿伟,马俊军. 铁路UHPC梁的正截面抗弯承载力计算公式及应用. 铁道工程学报. 2022(05): 33-38+72 . 百度学术
    21. 蒋盛钢. 地铁车站装配式轨顶风道力学性能研究. 建筑结构. 2022(S2): 1673-1677 . 百度学术
    22. 樊健生,王哲,杨松,陈钒,丁然. 超高性能混凝土板冲切与弯曲性能研究. 工程力学. 2021(04): 30-43 . 本站查看
    23. 刘沐宇,赵刚,丁庆军,张强. 轻质超高性能混凝土(LUHPC)梁抗弯性能试验. 武汉理工大学学报(交通科学与工程版). 2021(03): 524-529 . 百度学术
    24. 孙宗磊,杨少军,刘琛,高明昌,吕梁. 基于UHPC板和EPS耗能层的落石冲击力研究. 铁道标准设计. 2021(07): 88-92 . 百度学术
    25. 韩东,凌俊. 超高性能混凝土在桥梁快速维护中的应用. 人民交通. 2020(03): 69+71 . 百度学术
    26. 毕继红,霍琳颖,乔浩玥,赵云. 单向受拉状态下的钢纤维混凝土本构模型. 工程力学. 2020(06): 155-164 . 本站查看
    27. 卜一之,刘欣益,张清华. 基于截面应力法的钢-UHPC组合板初裂荷载计算方法研究. 工程力学. 2020(10): 209-217 . 本站查看
    28. 刘琛,陈应陶,杨少军,高明昌,王飞华. 兰张高铁十八里堡特大桥56 m UHPC组合简支梁设计研究. 铁道标准设计. 2020(11): 57-61 . 百度学术

    其他类型引用(35)

计量
  • 文章访问数:  823
  • HTML全文浏览量:  169
  • PDF下载量:  140
  • 被引次数: 63
出版历程
  • 收稿日期:  2018-06-02
  • 修回日期:  2018-10-30
  • 刊出日期:  2019-08-24

目录

    /

    返回文章
    返回