钛-钢复合钢材力学性能及本构模型研究

班慧勇, 白日升, 刘明, 李文斌, 白音

班慧勇, 白日升, 刘明, 李文斌, 白音. 钛-钢复合钢材力学性能及本构模型研究[J]. 工程力学, 2019, 36(7): 57-66. DOI: 10.6052/j.issn.1000-4750.2018.06.0343
引用本文: 班慧勇, 白日升, 刘明, 李文斌, 白音. 钛-钢复合钢材力学性能及本构模型研究[J]. 工程力学, 2019, 36(7): 57-66. DOI: 10.6052/j.issn.1000-4750.2018.06.0343
BAN Hui-yong, BAI Ri-sheng, LIU Ming, LI Wen-bin, BAI Yin. Study on the material properties and constitutive model of titanium-clad steel[J]. Engineering Mechanics, 2019, 36(7): 57-66. DOI: 10.6052/j.issn.1000-4750.2018.06.0343
Citation: BAN Hui-yong, BAI Ri-sheng, LIU Ming, LI Wen-bin, BAI Yin. Study on the material properties and constitutive model of titanium-clad steel[J]. Engineering Mechanics, 2019, 36(7): 57-66. DOI: 10.6052/j.issn.1000-4750.2018.06.0343

钛-钢复合钢材力学性能及本构模型研究

基金项目: 国家自然科学基金项目(51608300)
详细信息
    作者简介:

    白日升(1993-),男,山西临汾人,硕士,主要从事复合钢材的研究(E-mail:bairsh@buaa.edu.cn);刘明(1980-),男,辽宁鞍山人,高工,硕士,主要从事高性能钢材研究(E-mail:aglm6@163.com);李文斌(1978-),男,四川巴中人,高工,学士,主要从事钢铁产品于新工艺开发工作(E-mail:aglwb@163.com);白音(1980-),男,山西太谷人,讲师,博士,主要从事空间钢结构抗火受力性能研究(E-mail:baibowenbai@buaa.edu.cn)

    通讯作者:

    班慧勇(1985-),男,内蒙古呼和浩特人,特别研究员,博士,主要从事高性能钢材与钢结构研究(E-mail:banhy@tsinghua.edu.cn).

  • 中图分类号: TU391;TU317

Study on the material properties and constitutive model of titanium-clad steel

  • 摘要: 为系统研究钛-钢复合钢材的力学性能,对2 mm~12 mm厚TA2+Q235B钛-钢复合钢材进行了系列试验研究,包括拉伸、剪切、粘结、弯曲、冲击韧性、硬度等试验,其中拉伸试件设计考虑了复合比的影响。基于试验结果,得到了该类钛-钢复合钢材的基本力学性能指标,并重点对其单调拉伸荷载下的力学性能进行了分析研究。试验结果表明:钛-钢复合钢材的应力-应变曲线特征及典型力学性能指标与复合比的大小直接相关;随着复合比的增大,屈服平台逐渐消失,弹性模量逐渐减小,屈服强度和断后伸长率逐渐升高,但抗拉强度的变化并不明显,这与钛TA2和Q235B低碳钢本身的力学性能有关。基于拉伸试验数据和有限元数值计算结果,提出了钛-钢复合钢材的力学指标计算方法,建立了其本构模型。此外,剪切和粘结试验得到的复合界面强度尽管较低,但对拉伸力学性能影响十分有限;同时,该类复合钢材的受弯和冲击性能良好,硬度结果呈现两侧高、中间界面层低的情况。研究结果可为钛-钢复合钢材在结构工程领域的研究和应用提供基础参考和材料本构模型,并有利于促进其工程应用。
    Abstract: To study the mechanical properties of titanium-clad (TC) steel systematically, a series of tests on TA2+Q235B (2 mm~12 mm thick) TC steel plates are carried out including tension coupon test with various clad ratios, shear test, combine test, bending test, impact test and hardness test. Based on the test results, basic mechanical properties of this kind of TC steel are obtained. In particular, the mechanical properties under monotonic tensile loading are focused on. It is indicated that the characteristics of the stress-strain curves and typical mechanical properties of the titanium-clad steel are directly related to the clad ratio. With an increase of the clad ratio, the yield plateau disappears gradually and the elastic modulus decreases, whilst the yield strength and the elongation increase although the change in tensile strength is insignificant. These phenomena are related to the mechanical properties of titanium (TA2) and low carbon steel (Q235B). Based on the tensile test data and finite element analysis results, a calculation method for determining the mechanical index of the TC steel is developed, and a constitutive model of the TC steel is proposed in this paper. In addition, despite the fact that the strengths obtained from the shear and combine tests were low, their effects on the tensile properties are rather limited. The bending performance and impact properties of the TC steel are good; the hardness of the base layer and cladding layer are higher than that at the bonding interface region. This work may provide basic reference and the material constitutive model for research of the TC steel in structural engineering, and may promote its engineering applications.
  • [1] 闫力. 钛钢复合板的特点及应用领域[J]. 中国钛业, 2011(3):12-14. Yan Li. Behaviotsard applications of Ti/Steel composite sheets[J]. Titanium industry in China, 2011(3):12-14. (in Chinese)
    [2] Huiyong Ban, Yongjiu Shi, Xiaoyan Tao. Use of clad steel in engineering structures[C]//Proceedings of the Fifteenth East Asia-Pacific Conference on Structural Engineering & Construction, Xi'an, China, 2017:1167-1173.
    [3] 孟宪斌, 易彩虹, 吴小玲, 等. 钛及钛合金复合材料发展及工业应用[J]. 中国化工装备, 2013, 15(6):3-7. Meng Xianbing, Yi Caihong, Wu Xiaoling, et al. The development and industrial application of titanium & titanium alloy clad material[J]. China Chemical Industry Equipment, 2013, 15(6):3-7. (in Chinese)
    [4] GB/T 8547-2006, 钛-钢复合板[S]. 北京:中国标准出版社, 2006. GB/T 8547-2006, Titanium clad steel plate[S]. Beijing:Standards Press of China, 2006. (in Chinese)
    [5] Jifeng Sun, Xiaojun Liang, Sihai Jiao. Study on the interface of direct hot rolling titanium-clad steel plates[J]. Baosteel Technical Research, 2017, 11(1):32-39.
    [6] 王宽, 朱海平, 宋振莉, 等. 钛钢复合板界面特征研究述评[J]. 功能材料, 2017, 48(4):25-32. Wang Kuan, Zhu Haiping, Song Zhenli, et al. Review on characteristics of interface of titanium clad steel plate[J]. Functional Materials, 2017, 48(4):25-32. (in Chinese)
    [7] 段文森, 鲁汉民, 刘建新. 金属爆炸复合界面的疲劳裂纹扩展特性及断裂机制的研究[J]. 稀有金属材料与工程, 1989, 3(8):6-10. Duan Wensen, Lu Hanmin, Liu Jianxin. Study on fatigue crack propagation and fracture mechanisms of explosive clad metal interface[J]. Rare Metal Materials and Engineering, 1989, 3(8):6-10. (in Chinese)
    [8] 杨扬. 钛/钢爆炸复合界面的微观组织结构和力学行为[J]. 材料导报, 1994, 8(5):26. Yang Yang. The microstructures in the explosive cladding titanium/mild steel interface after heat treatment[J]. Materials Review, 1994, 8(5):26. (in Chinese)
    [9] Motarjemi A K, Kocak M, Ventzke V. Mechanical and fracture characterization of a bi-material steel plate[J]. International Journal of Pressure Vessels and Piping, 2002, 19(3):181-191.
    [10] Zhichao Zhu, Yi He, Xinjin Zhang, et al. Effect of interface oxides on shear properties of hot-holled steel clad plate[J]. Materials Science & Engineering A, 2016, 669:344-349.
    [11] 施刚, 朱希. 高强度结构钢材单调荷载作用下的本构模型研究[J]. 工程力学, 2017, 34(2):50-59. Shi Gang, Zhu Xi. Study on constitutive model of high-strength structural steel under monotonic loading[J]. Engineering Mechanics, 2017, 34(2):50-59. (in Chinese)
    [12] 杨璐, 卫璇, 张有振, 等. 不锈钢母材及其焊缝金属材料单拉本构关系研究[J]. 工程力学, 2018, 35(5):125-130. Yang Lu, Wei Xuan, Zhang Youzhen, et al. Research on the tensile stress-strain relation of stainless steel base material and its weld metal material[J]. Engineering Mechanics, 2018, 35(5):125-130. (in Chinese)
    [13] GB/T 3620.1-2007, 钛及钛合金牌号和化学成分[S]. 北京:中国标准出版社, 2007. GB/T 3620.1-2007, Designation and composition of titanium and titanium and alloys[S]. Beijing:Standards Press of China, 2007. (in Chinese)
    [14] GB/T 700-2006, 碳素结构钢[S]. 北京:中国标准出版社, 2006. GB/T 700-2006, Carbon structural steels[S]. Beijing:Standards Press of China, 2006. (in Chinese)
    [15] GB/T 228.1-2010, 金属材料拉伸试验第1部分:室温试验方法[S]. 北京:中国标准出版社, 2010. GB/T 228.1-2010, Metallic materials-tensile testingpart 1:Method of test at room temperature[S]. Beijing:Standards Press of China, 2010. (in Chinese)
    [16] GB/T 6396-2008, 复合钢板力学及工艺性能试验方法[S]. 北京:中国标准出版社, 2008. GB/T 6396-2008, Clad steel plates-Mechanical and technological test[S]. Beijing:Standards Press of China, 2008. (in Chinese)
    [17] GB/T 228.1-2010, 金属材料弯曲试验方法[S]. 北京:中国标准出版社, 2010. GB/T 228.1-2010, Metallic materials-Bend test[S]. Beijing:Standards Press of China, 2010. (in Chinese)
    [18] GB/T 229-2007, 金属材料瞎比摆锤冲击试验方法[S]. 北京:中国标准出版社, 2007. GB/T 229-2007, Metallic materials-Charpy pendulum impact method[S]. Beijing:Standards Press of China, 2007. (in Chinese)
    [19] Ramberg W, Osgood W R. Description of stress-strain curves by three parameters[J]. National Advisory Committee for Aeronautics, 1943, TN902.
    [20] Rasmussen K J R. Full-rage stress-strain curves for stainless steel alloys[J]. Journal of Constructional Steel Research, 2003, 59(1):47-61.
    [21] 钟善桐. 钢管混凝土统一理论[J]. 哈尔滨建筑工程学院学报, 1994, 27(6):21-28. Zhong Shantong. The unified theory of concrete filled steel tube (CFST)[J]. Journal of Harbin University of Civil Engineering, 1994, 27(6):21-28. (in Chinese)
    [22] 班慧勇, 施刚, 石永久. 高强钢焊接箱型轴压构件整体稳定设计方法研究[J]. 建筑结构学报, 2014, 35(5):57-64. Ban Huiyong, Shi Gang, Shi Yongjiu. Research on design method for overall buckling behaviour of welded box columns fabricated from high-strength steel[J]. Journal of Building Structures, 2014, 35(5):57-64. (in Chinese)
    [23] GB/T 1591-2008, 低合金高强度结构钢[S]. 北京:中国标准出版社, 2008. GB/T 1591-2008, High strength low alloy structural steels[S]. Beijing:Standards Press of China, 2008. (in Chinese)
  • 期刊类型引用(6)

    1. 李双宝,李芳. 高温环境下发动机叶片-硬涂层阻尼结构动力学建模与分析. 中国民航大学学报. 2024(01): 30-39 . 百度学术
    2. 黄梦婷,仝国军,张东健,蒲伟. 多孔双向功能梯度板瞬态热应力分析. 机械科学与技术. 2024(09): 1631-1639 . 百度学术
    3. 刘知辉,牛军川,贾睿昊. 热梯度环境下梁高频振动的能量流模型. 航空学报. 2022(05): 592-604 . 百度学术
    4. 王永刚,胡宇达,徐浩然. 谐变力作用功能梯度旋转圆板强非线性主共振. 工程力学. 2022(11): 31-41 . 本站查看
    5. 孙梦楠,刘少华,刘京城. 顾及空间各向异性的IDW插值算法. 计算机工程与设计. 2020(04): 983-987 . 百度学术
    6. 张正平. 飞行器薄壁结构热噪声响应及动强度研究. 强度与环境. 2019(01): 1-7 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  698
  • HTML全文浏览量:  111
  • PDF下载量:  101
  • 被引次数: 13
出版历程
  • 收稿日期:  2018-06-15
  • 修回日期:  2018-09-29
  • 刊出日期:  2019-07-24

目录

    /

    返回文章
    返回