膜结构极小曲面找形的一种自适应有限元分析

袁驷, 蒋凯峰, 邢沁妍

袁驷, 蒋凯峰, 邢沁妍. 膜结构极小曲面找形的一种自适应有限元分析[J]. 工程力学, 2019, 36(1): 15-22. DOI: 10.6052/j.issn.1000-4750.2018.06.ST01
引用本文: 袁驷, 蒋凯峰, 邢沁妍. 膜结构极小曲面找形的一种自适应有限元分析[J]. 工程力学, 2019, 36(1): 15-22. DOI: 10.6052/j.issn.1000-4750.2018.06.ST01
YUAN Si, JIANG Kai-feng, XING Qin-yan. A NEW ADAPTIVE FEM FOR MINIMAL SURFACES FORM-FINDING OF MEMBRANE STRUCTURES[J]. Engineering Mechanics, 2019, 36(1): 15-22. DOI: 10.6052/j.issn.1000-4750.2018.06.ST01
Citation: YUAN Si, JIANG Kai-feng, XING Qin-yan. A NEW ADAPTIVE FEM FOR MINIMAL SURFACES FORM-FINDING OF MEMBRANE STRUCTURES[J]. Engineering Mechanics, 2019, 36(1): 15-22. DOI: 10.6052/j.issn.1000-4750.2018.06.ST01

膜结构极小曲面找形的一种自适应有限元分析

基金项目: 国家自然科学基金项目(51378293,51078199)
详细信息
    作者简介:

    蒋凯峰(1992-),男,福建人,博士生,从事结构工程研究(E-mail:jkf15@mails.tsinghua.edu.cn);邢沁妍(1981-),女,辽宁人,讲师,博士,从事结构工程研究(E-mail:xingqy@tsinghua.edu.cn).

    通讯作者:

    袁驷(1953-),男,北京人,教授,博士,中国土木工程学会副理事长,中国力学学会副理事长,从事结构工程研究(E-mail:yuans@tsinghua.edu.cn)

  • 中图分类号: TU311.4

A NEW ADAPTIVE FEM FOR MINIMAL SURFACES FORM-FINDING OF MEMBRANE STRUCTURES

  • 摘要: 找形分析是膜结构设计中的关键环节,但在数学上,膜结构的极小曲面找形分析是一个高度非线性问题,一般无法求得其解析解,因此数值方法成为重要工具。近年来,基于单元能量投影法(EEP法)的一维非线性有限元的自适应分析已经取得成功,基于EEP法的二维线性有限元自适应分析也被证实是有效、可靠的。在此基础上,该文提出一种基于EEP法的二维非线性有限元自适应方法,并成功将之应用于膜结构的找形分析。其主要思想是,通过将非线性问题用Newton法线性化,引入现有的二维线性问题的自适应求解技术,进而实现二维有限元自适应分析技术从线性到非线性的跨越,将非线性有限元的自适应分析求解从一维问题拓展到二维问题。该方法兼顾求解的精度和效率,对网格自适应地进行调整,最终得到优化的网格,其解答可按最大模度量逐点满足用户设定的误差限。该文综述介绍了这一进展,并给出数值算例用以表明该方法的可行性和可靠性。
    Abstract: Form-finding analysis is a key step of the design of membrane structures. The minimal-surface form-finding problem of membrane structures is a highly nonlinear problem in mathematics, and no analytic solutions are available in general. Thusly, numerical methods are an important approach. In recent years, remarkable success has been made in the adaptive analysis of both 1D nonlinear finite element method (FEM) and 2D linear FEM based on element energy projection (EEP) super-convergent technique. A new adaptive strategy for 2D nonlinear FEM is developed and applied to the form-finding of membrane structures. In this method, by linearizing nonlinear problems into a series of linear problems via the Newton method, the existing 2D linear adaptive strategy based on EEP technique can be incorporated into a nonlinear solution procedure. As a result, an adaptive mesh is automatically generated and adjusted by the algorithm to guarantee to produce a satisfactory solution with the results satisfying the user-preset error tolerance by maximum norm. Pertinent numerical examples are presented to demonstrate the feasibility and effectiveness of the newly developed method.
  • [1] Hildebrandt S, Tromba A. Mathematics and optimal form[J]. College Mathematics Journal, 1985, 18(1):84.
    [2] Schek H J. The force density method for form finding and computation of general networks[J]. Computer Methods in Applied Mechanics & Engineering, 1974, 3(1):115-134.
    [3] Gründig L. Minimal surfaces for finding forms of structural membranes[J]. Computers & Structures, 1988, 30(3):679-683.
    [4] Maurin B, Motro R. The surface stress density method as a form-finding tool for tensile membranes[J]. Engineering Structures, 1998, 20(8):712-719.
    [5] Day A S. An introduction to dynamic relaxation[J]. The Engineer, 1965, 29(1):218-221.
    [6] Topping B H V. The application of dynamic relaxation to the design of modular space structures[D]. London:City University London, 1978.
    [7] Lewis W J, Jones M S, Rushton K R. Dynamic relaxation analysis of the non-linear static response of pretensioned cable roofs[J]. Computers & Structures, 1984, 18(6):989-997.
    [8] Barnes M. Form stress engineering of tension structures[J]. Structural Engineering Review, 1994, 6(3):175-202.
    [9] Haug E, Powell G H. Finite element analysis of nonlinear membrane structures[C]//Tension and Space Structures (v.2):Proceedings of the 1971 IASS Pacific Symposium. Tokyo and Kyoto, 1972:165-175.
    [10] Argyris J H, Balmer H, Kleiber M, et al. Natural description of large inelastic deformations for shells of arbitrary shape-application of trump element[J]. Computer Methods in Applied Mechanics & Engineering, 1980, 22(3):361-389.
    [11] Nishimura T, Tosaka N, Honma T. Membrane structure analysis using the finite element technique[C]. IASS Symposium, Osaka, 1986:9-16.
    [12] 袁驷. 从矩阵位移法看有限元应力精度的损失与恢复[J]. 力学与实践, 1998, 20(4):1-6. Yuan Si. The loss and recovery of stress accuracy in FEM as seen from matrix displacement method[J]. Mechanics in Engineering, 1998, 20(4):1-6. (in Chinese)
    [13] Strang G, Fix G J. An analysis of the finite element method[M]. Englewood Cliffs, NJ:Prentice-Hall, 1973.
    [14] 袁驷, 王枚. 一维有限元后处理超收敛解答计算的EEP法[J]. 工程力学, 2004, 21(2):1-9. Yuan Si, Wang Mei. An element-energy-projection method for post-computation of super-convergent solutions in one-dimensional FEM[J]. Engineering Mechanics, 2004, 21(2):1-9. (in Chinese)
    [15] 袁驷, 王旭, 邢沁妍, 等. 具有最佳超收敛阶的EEP法计算格式:I算法公式[J]. 工程力学, 2007, 24(10):1-5. Yuan Si, Wang Xu, Xing Qinyan, et al. Ascheme with optimal order of super-convergence based on the element energy projection method-I formulation[J]. Engineering Mechanics, 2007, 24(10):1-5. (in Chinese)
    [16] 袁驷, 杜炎, 邢沁妍, 等. 一维EEP自适应技术新进展:从线性到非线性[J]. 工程力学, 2012, 29(增刊Ⅱ):1-8. Yuan Si, Du Yan, Xing Qinyan, et al. New progress in self-adaptive analysis of 1D problems:from linear to nonlinear[J]. Engineering Mechanics, 2012, 29(Suppl Ⅱ):1-8. (in Chinese)
    [17] Yuan Si, Du Yan, Xing Qinyan, et al. Self-adaptive one-dimensional nonlinear finite element method based on element energy projection method[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(10):1223-1232.
    [18] 杜炎. 基于EEP法的一维非线性有限元法自适应分析[D]. 北京:清华大学, 2012. Du Yan. Adaptive analysis of 1D nonlinear FEM based on EEP super-convergent method[D]. Beijing:Tsinghua University, 2012. (in Chinese)
    [19] 袁驷, 刘泽洲, 邢沁妍. 一维变分不等式问题的自适应有限元分析新探[J]. 工程力学, 2015, 32(7):11-16. Yuan Si, Liu Zezhou, Xing Qinyan. A new approach to self-adaptive FEM for one-dimensional variational inequality problems[J]. Engineering Mechanics, 2015, 32(7):11-16. (in Chinese)
    [20] 袁驷, 王枚, 王旭. 二维有限元线法超收敛解答计算的EEP法[J]. 工程力学, 2007, 24(1):1-10. Yuan Si, Wang Mei, Wang Xu. An element-energy projection method for super-convergence solutions in two-dimensional finite element method of lines[J]. Engineering Mechanics, 2007, 24(1):1-10. (in Chinese)
    [21] 袁驷, 肖嘉, 叶康生. 线法二阶常微分方程组有限元分析的EEP超收敛计算[J]. 工程力学, 2009, 26(11):1-9, 22. Yuan Si, Xiao Jia, Ye Kangsheng. EEP super-convergent computation in FEM analysis of FEMOL second order ODEs[J]. Engineering Mechanics, 2009, 26(11):1-9, 22. (in Chinese)
    [22] 袁驷, 徐俊杰, 叶康生, 等. 二维自适应技术新进展:从有限元线法到有限元法[J]. 工程力学, 2011, 28(增刊Ⅱ):1-10. Yuan Si, Xu Junjie, Ye Kangsheng, et al. New progress in self-adaptive analysis of 2D problems:from FEMOL to FEM[J]. Engineering Mechanics, 2011, 28(Suppl Ⅱ):1-10. (in Chinese)
    [23] 袁驷, 吴越, 徐俊杰, 等. 基于EEP法的三维有限元超收敛计算初探[J]. 工程力学, 2016, 33(9):15-20. Yuan Si, Wu Yue, Xu Junjie, et al. Exploration on super-convergent solutions of 3D FEM based on EEP method[J]. Engineering Mechanics, 2016, 33(9):15-20. (in Chinese)
    [24] Yuan Si. The finite element method of lines[M]. Beijing-New York:Science Press, 1993.
    [25] Dierkes U, Hildebrandt S, Wohlrab O. Minimal surfaces I[J]. Grundlehren Der Mathematischen Wissenschaften, 1992, 295(11):13-40.
计量
  • 文章访问数:  499
  • HTML全文浏览量:  54
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-18
  • 刊出日期:  2019-01-28

目录

    /

    返回文章
    返回