[1] |
Hildebrandt S, Tromba A. Mathematics and optimal form[J]. College Mathematics Journal, 1985, 18(1):84.
|
[2] |
Schek H J. The force density method for form finding and computation of general networks[J]. Computer Methods in Applied Mechanics & Engineering, 1974, 3(1):115-134.
|
[3] |
Gründig L. Minimal surfaces for finding forms of structural membranes[J]. Computers & Structures, 1988, 30(3):679-683.
|
[4] |
Maurin B, Motro R. The surface stress density method as a form-finding tool for tensile membranes[J]. Engineering Structures, 1998, 20(8):712-719.
|
[5] |
Day A S. An introduction to dynamic relaxation[J]. The Engineer, 1965, 29(1):218-221.
|
[6] |
Topping B H V. The application of dynamic relaxation to the design of modular space structures[D]. London:City University London, 1978.
|
[7] |
Lewis W J, Jones M S, Rushton K R. Dynamic relaxation analysis of the non-linear static response of pretensioned cable roofs[J]. Computers & Structures, 1984, 18(6):989-997.
|
[8] |
Barnes M. Form stress engineering of tension structures[J]. Structural Engineering Review, 1994, 6(3):175-202.
|
[9] |
Haug E, Powell G H. Finite element analysis of nonlinear membrane structures[C]//Tension and Space Structures (v.2):Proceedings of the 1971 IASS Pacific Symposium. Tokyo and Kyoto, 1972:165-175.
|
[10] |
Argyris J H, Balmer H, Kleiber M, et al. Natural description of large inelastic deformations for shells of arbitrary shape-application of trump element[J]. Computer Methods in Applied Mechanics & Engineering, 1980, 22(3):361-389.
|
[11] |
Nishimura T, Tosaka N, Honma T. Membrane structure analysis using the finite element technique[C]. IASS Symposium, Osaka, 1986:9-16.
|
[12] |
袁驷. 从矩阵位移法看有限元应力精度的损失与恢复[J]. 力学与实践, 1998, 20(4):1-6. Yuan Si. The loss and recovery of stress accuracy in FEM as seen from matrix displacement method[J]. Mechanics in Engineering, 1998, 20(4):1-6. (in Chinese)
|
[13] |
Strang G, Fix G J. An analysis of the finite element method[M]. Englewood Cliffs, NJ:Prentice-Hall, 1973.
|
[14] |
袁驷, 王枚. 一维有限元后处理超收敛解答计算的EEP法[J]. 工程力学, 2004, 21(2):1-9. Yuan Si, Wang Mei. An element-energy-projection method for post-computation of super-convergent solutions in one-dimensional FEM[J]. Engineering Mechanics, 2004, 21(2):1-9. (in Chinese)
|
[15] |
袁驷, 王旭, 邢沁妍, 等. 具有最佳超收敛阶的EEP法计算格式:I算法公式[J]. 工程力学, 2007, 24(10):1-5. Yuan Si, Wang Xu, Xing Qinyan, et al. Ascheme with optimal order of super-convergence based on the element energy projection method-I formulation[J]. Engineering Mechanics, 2007, 24(10):1-5. (in Chinese)
|
[16] |
袁驷, 杜炎, 邢沁妍, 等. 一维EEP自适应技术新进展:从线性到非线性[J]. 工程力学, 2012, 29(增刊Ⅱ):1-8. Yuan Si, Du Yan, Xing Qinyan, et al. New progress in self-adaptive analysis of 1D problems:from linear to nonlinear[J]. Engineering Mechanics, 2012, 29(Suppl Ⅱ):1-8. (in Chinese)
|
[17] |
Yuan Si, Du Yan, Xing Qinyan, et al. Self-adaptive one-dimensional nonlinear finite element method based on element energy projection method[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(10):1223-1232.
|
[18] |
杜炎. 基于EEP法的一维非线性有限元法自适应分析[D]. 北京:清华大学, 2012. Du Yan. Adaptive analysis of 1D nonlinear FEM based on EEP super-convergent method[D]. Beijing:Tsinghua University, 2012. (in Chinese)
|
[19] |
袁驷, 刘泽洲, 邢沁妍. 一维变分不等式问题的自适应有限元分析新探[J]. 工程力学, 2015, 32(7):11-16. Yuan Si, Liu Zezhou, Xing Qinyan. A new approach to self-adaptive FEM for one-dimensional variational inequality problems[J]. Engineering Mechanics, 2015, 32(7):11-16. (in Chinese)
|
[20] |
袁驷, 王枚, 王旭. 二维有限元线法超收敛解答计算的EEP法[J]. 工程力学, 2007, 24(1):1-10. Yuan Si, Wang Mei, Wang Xu. An element-energy projection method for super-convergence solutions in two-dimensional finite element method of lines[J]. Engineering Mechanics, 2007, 24(1):1-10. (in Chinese)
|
[21] |
袁驷, 肖嘉, 叶康生. 线法二阶常微分方程组有限元分析的EEP超收敛计算[J]. 工程力学, 2009, 26(11):1-9, 22. Yuan Si, Xiao Jia, Ye Kangsheng. EEP super-convergent computation in FEM analysis of FEMOL second order ODEs[J]. Engineering Mechanics, 2009, 26(11):1-9, 22. (in Chinese)
|
[22] |
袁驷, 徐俊杰, 叶康生, 等. 二维自适应技术新进展:从有限元线法到有限元法[J]. 工程力学, 2011, 28(增刊Ⅱ):1-10. Yuan Si, Xu Junjie, Ye Kangsheng, et al. New progress in self-adaptive analysis of 2D problems:from FEMOL to FEM[J]. Engineering Mechanics, 2011, 28(Suppl Ⅱ):1-10. (in Chinese)
|
[23] |
袁驷, 吴越, 徐俊杰, 等. 基于EEP法的三维有限元超收敛计算初探[J]. 工程力学, 2016, 33(9):15-20. Yuan Si, Wu Yue, Xu Junjie, et al. Exploration on super-convergent solutions of 3D FEM based on EEP method[J]. Engineering Mechanics, 2016, 33(9):15-20. (in Chinese)
|
[24] |
Yuan Si. The finite element method of lines[M]. Beijing-New York:Science Press, 1993.
|
[25] |
Dierkes U, Hildebrandt S, Wohlrab O. Minimal surfaces I[J]. Grundlehren Der Mathematischen Wissenschaften, 1992, 295(11):13-40.
|