大型水平轴风力机新型叶片结构设计思想和研究进展

杨阳, 曾攀, 雷丽萍

杨阳, 曾攀, 雷丽萍. 大型水平轴风力机新型叶片结构设计思想和研究进展[J]. 工程力学, 2019, 36(10): 1-7. DOI: 10.6052/j.issn.1000-4750.2018.06.ST04
引用本文: 杨阳, 曾攀, 雷丽萍. 大型水平轴风力机新型叶片结构设计思想和研究进展[J]. 工程力学, 2019, 36(10): 1-7. DOI: 10.6052/j.issn.1000-4750.2018.06.ST04
YANG Yang, ZENG Pan, LEI Li-ping. CONCEPT AND DEVELOPMENT OF NOVEL BLADE STRUCTURE OF LARGE HORIZONTAL-AXIS WIND TURBINE[J]. Engineering Mechanics, 2019, 36(10): 1-7. DOI: 10.6052/j.issn.1000-4750.2018.06.ST04
Citation: YANG Yang, ZENG Pan, LEI Li-ping. CONCEPT AND DEVELOPMENT OF NOVEL BLADE STRUCTURE OF LARGE HORIZONTAL-AXIS WIND TURBINE[J]. Engineering Mechanics, 2019, 36(10): 1-7. DOI: 10.6052/j.issn.1000-4750.2018.06.ST04

大型水平轴风力机新型叶片结构设计思想和研究进展

基金项目: 国家自然科学基金项目(51575296)
详细信息
    作者简介:

    杨阳(1990-),男,广东人,博士生,从事新型风机叶片设计分析研究(E-mail:yangyang13@mails.tsinghua.edu.cn);曾攀(1963-),男,海南人,教授,博士,博导,从事计算力学、结构设计、数值模拟研究(E-mail:zengp@mail.tsinghua.edu.cn).

    通讯作者:

    雷丽萍(1968-),女,广西人,副教授,博士,博导,从事材料加工、数值模拟、结构设计研究(E-mail:leilp@mail.tsinghua.edu.cn).

  • 中图分类号: TM315

CONCEPT AND DEVELOPMENT OF NOVEL BLADE STRUCTURE OF LARGE HORIZONTAL-AXIS WIND TURBINE

  • 摘要: 该文首先阐释了在风力机大型化发展过程中叶片结构设计的主要问题在于大型叶片对综合结构性能的高要求与轻量化、气动性能之间的矛盾,传统悬臂梁结构叶片的承载特性限制了叶片进一步大型化发展的空间,新型叶片结构的设计开发是解决这一问题的有效手段。新型叶片结构的设计思想按其着眼点主要包括仿生柔性设计思想、分段设计思想和局部附加结构的设计思想等。在此基础上,该文综述了近年来新型叶片结构的研究进展,为大型叶片结构设计提供了参考。
    Abstract: During the development of large-scale horizontal axis wind turbines, the major problem is the contradiction among the structure reliability and the requirement of light weight and aerodynamics efficiency. The structural characteristics of a traditional cantilever blade has restricted the further development of large wind turbines. The novel form of a blade structure is the effective solution to the problem, such as bionic flexible blades, segmented blades and multi-element blades. This paper reviews the state of the art of novel blade structures in recent years, providing some references for large blade design.
  • [1] World Wind Energy Association. Wind power capacity worldwide reaches 600 GW, 53.9 GW added in 2018[EB/OL]. https://wwindea.org/blog/2019/02/25/windpower-capacity-worldwide-reaches-600-gw-539-gw-added-in-2018,2019-02-25.
    [2] Jamieson P. Innovation in wind turbine design[M]. Chichester:Wiley, 2011:75-104.
    [3] Griffith D T, Ashwill T D. The sandia 100-meter all-glass baseline wind turbine blade:SNL100-00[R]. Albuquerque:Sandia National Laboratories, 2011.
    [4] Fichaux N, Beurskens J, Jensen P H, et al. Design limits and solutions for very large wind turbines:A 20 MW turbine is feasible[R]. Brussels:European Wind Energy Association, 2011.
    [5] Ichter B, Steele A, Loth E, et al. Structural design and analysis of a segmented ultralight morphing rotor (SUMR) for extreme-scale wind turbines[C]//42nd AIAA Fluid Dynamics Conference and Exhibit. New Orleans:AIAA, 2012:3270.
    [6] Loth E, Steele A, Ichter B, et al. Segmented ultralight pre-aligned rotor for extreme-scale wind turbines[C]//50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Nashville:AIAA, 2012:1290.
    [7] Barlas T K, van Kuik G A. Review of state of the art in smart rotor control research for wind turbines[J]. Progress in Aerospace Sciences, 2010, 46(1):1-27.
    [8] Konga C, Banga J, Sugiyamab Y. Structural investigation of composite wind turbine blade considering various load cases and fatigue life[J]. Energy, 2005, 30(11/12):2101-2114.
    [9] Coxa K, Echtermeyerb A. Structural design and analysis of a 10 MW wind turbine blade[J]. Energy Procedia, 2012. 24:194-201.
    [10] Chen J, Wang Q, Shen W Z, et al. Structural optimization study of composite wind turbine blade[J]. Materials & Design, 2013, 46:247-255.
    [11] Liao C C, Zhao X L, Xu J Z. Blade layers optimization of wind turbines using FAST and improved PSO Algorithm[J]. Renewable Energy, 2012, 42:227-233.
    [12] Fischer G R, Kipouros T, Savill A M. Multi-objective optimisation of horizontal axis wind turbine structure and energy production using aerofoil and blade properties as design variables[J]. Renewable Energy, 2014, 62:506-515.
    [13] Sharifi A, Nobari M R H. Prediction of optimum section pitch angle distribution along wind turbine blades[J]. Energy Conversion and Management, 2013, 67:342-350.
    [14] Mishnaevsky Jr L. Composite materials in wind energy technology[M/OL]//Favorsky O N. Thermal to Mechanical Energy Conversion:Engines and Requirements. Oxford:EOLSS, 2011. https://www.eolss.net/samplechapters/C08/E3-11-42.pdf.2018-09-10
    [15] Prabhakaran R T D. Future materials for wind turbine blades-a critical review[C]//Proceedings of the International Conference on Wind Energy:Materials, Engineering and Policies. Andhra Pradesh:DTU, 2012:1-8.
    [16] Liu W Y, Platts M J. Concept representation, practical topology decision and analysis in composites lug design[C]//Proceedings of the International Conference on Frontiers of Design and Manufacturing. Tianjin:ICFDM, 2008:636-643.
    [17] Le Gourieres D. Wind power plants:theory and design[M]. Oxford:Elsevier, 2014.
    [18] Lobitz D W, Veers P S, Eisler G R, et al. The use of twist-coupled blades to enhance the performance of horizontal axis wind turbines[R]. Albuquerque:Sandia National Laboratories, 2001.
    [19] Aziz S, Gale J, Ebrahimpour A, et al. Passive control of a wind turbine blade using composite material[C]//Proceedings of the ASME 2011 International Mechanical Engineering Congress & Exposition. Denver:ASME, 2011:467-476.
    [20] Bottasso C L, Campagnolo F, Croce A, et al. Optimization-based study of bend-twist coupled rotor blades for passive and integrated passive/active load alleviation[J]. Wind Energy, 2013, 16:1149-1166.
    [21] Rasmussen F, Petersen J T, Vølund P, et al. Soft rotor design for flexible turbines:final report[R]. Roskilde:Risø National Laboratory, 1998.
    [22] Steele A, Ichter B, Qin C, et al. Aerodynamics of an ultralight load-aligned rotor for extreme-scale wind turbines[R]. Golden:National Renewable Energy Lab.(NREL), 2013.
    [23] Gu R, Xu J L, Yang Y B. The Investigation of the Small Bionic Wind Turbine Based on the Seagull Airfoil[J]. Advanced Materials Research, 2011, 347:3533-3539.
    [24] Zhang R K, Wu J Z. Aerodynamic characteristics of wind turbine blades with a sinusoidal leading edge[J]. Wind Energy, 2012, 15(3):407-424.
    [25] Liu T, Kuykendoll K, Rhew R, et al. Avian Wing Geometry and Kinematics[J]. AIAA Journal, 2006, 44(5):954-963.
    [26] Liu Wangyu, Jiaxing Gong. Adaptive bend-torsional coupling wind turbine blade design imitating the topology structure of natural plant leaves[M]//Al-Bahadly I H. Wind Turbines. Rijeka:InTech, 2011:51-86.
    [27] Linscott B S, Dennett J T, Gordon L H. The Mod-2 wind turbine development project[R]. Washington:US Department of Energy, 1981.
    [28] Xie W, Zeng P, Lei L. A novel folding blade of wind turbine rotor for effective power control[J]. Energy Conversion and Management, 2015, 101:52-65.
    [29] Dawson M H. Variable Length Wind Turbine Blade[R]. Boise:Energy Unlimited, Inc. 2006.
    [30] Lu H, Zeng P, Lei L, et al. A smart segmented blade system for reducing weight of the wind turbine rotor[J]. Energy Conversion and Management, 2014, 88:535-544.
    [31] Roth Johnson P, Wirz R E. Aero-structural investigation of biplane wind turbine blades[J]. Wind Energy, 2014, 17(3):397-411.
    [32] Migliore P G, Miller L, Quandt G. Wind turbine trailing edge aerodynamic brakes[R]. Golden:National Renewable Energy Laboratory, 1995.
    [33] Miller S. Experimental investigation of aerodynamic devices for wind turbine rotational speed control:Phase Ⅱ[R]. Golden:National Renewable Energy Laboratory, 1996.
    [34] Stuart J G, Wright A D, Butterfield C P. Considerations for an integrated wind turbine controls capability at the National Wind Technology Center:an aileron control case study for power regulation and load mitigation[R]. Golden:National Renewable Energy Laboratory, 1996.
    [35] Lachenal X, Daynes S, Weaver P M. A zero torsional stiffness twist morphing blade as a wind turbine load alleviation device[J]. Smart Materials and Structures. 2013, 22(6):065016.
    [36] Gaunaa M, Zahle F, Sørensen N N, et al. Quantification of the Effects of Using Slats on the Inner Part of a 10 MW Rotor[C]//Proceedings of EWEA 2012-European Wind Energy Conference & Exhibition. Copenhagen:European Wind Energy Association (EWEA), 2012:919-930.
    [37] Ragheb A, Selig M. Multi-element airfoil configurations for wind turbines[C]//29th AIAA Applied Aerodynamics Conference. Honolulu:American Institute of Aeronautics and Astronautics (AIAA), 2011:3971.
    [38] Narsipur S, Pomeroy B, Selig M. CFD Analysis of multielement airfoils for wind turbines[C]//30th AIAA Applied Aerodynamics Conference. New Orleans:American Institute of Aeronautics and Astronautics (AIAA), 2012:2781.
  • 期刊类型引用(16)

    1. 刘纲,杜昊天,顾水涛,黎华. 大型风力机叶片快速建模及损伤模拟方法研究. 重庆大学学报. 2025(01): 76-89 . 百度学术
    2. 马远卓,赵翔,李洪双,赵振宙,许波峰. 空间分割全局灵敏度方法研究及其在风机叶片极限载荷工况中的应用. 工程力学. 2024(05): 224-233 . 本站查看
    3. 张立祥,陈步严. KJS-400型对旋风机性能分析及改进. 佳木斯大学学报(自然科学版). 2024(05): 62-65 . 百度学术
    4. 印四华,杨碧霞,徐康康,汪泉,王冯云,张明康. 基于拓扑优化的结构参数对风力机叶片性能影响分析. 机床与液压. 2024(18): 95-101 . 百度学术
    5. 赵萌,兰兴博,侯卜瑛,刘印桢. 具有凸包结构的风力机翼型表面减阻数值模拟. 太阳能学报. 2024(09): 574-585 . 百度学术
    6. 许波峰,李振,朱紫璇,蔡新,王同光,赵振宙. 大型下风向柔性叶片参数化建模及两目标优化设计. 太阳能学报. 2023(03): 147-154 . 百度学术
    7. 王海生,缪维跑,李春,李志昊,岳敏楠,朱海波. 主梁腹板偏置及复合材料铺层的大型风力机叶片结构性能分析. 中国电机工程学报. 2023(19): 7509-7519 . 百度学术
    8. 曹忠鹏,陈文婷,艾超. 大型风力机周围流场及气动特性仿真分析. 液压与气动. 2023(12): 6-12 . 百度学术
    9. 李治国,郝波,刘乐,高志鹰,汪建文. 分段式叶片质量分布对风轮轴向窜动和陀螺效应的影响. 振动与冲击. 2022(07): 193-198+249 . 百度学术
    10. 王同光,田琳琳,钟伟,王珑,朱呈勇. 风能利用中的空气动力学研究进展Ⅰ:风力机气动特性. 空气动力学学报. 2022(04): 1-21 . 百度学术
    11. 张立祥,黄涔岸,王祥祥. 优化前后的降尘风机模拟仿真对比分析. 煤炭技术. 2022(10): 240-243 . 百度学术
    12. 赵斌,武熠杰,王绍龙,袁喜鹏,冯放. 适用于西藏地区的聚风型垂直轴风力机结构特性分析. 排灌机械工程学报. 2021(03): 270-277 . 百度学术
    13. 张颖,安利强,周邢银,王璋奇. 弯扭耦合层合板模态特性数值模拟与试验研究. 振动与冲击. 2021(08): 194-200 . 百度学术
    14. 陈安杰,王策,贾娅娅,刘庆宽. 基于BEM的风力机叶片气动性能计算分析. 工程力学. 2021(S1): 264-268 . 本站查看
    15. 暴小娜,吴晓青,吴海亮,江一杭,刘鲜红,杨忠. 碳纤维叶片壳体真空灌注成型工艺仿真模拟. 西部皮革. 2021(14): 14-16 . 百度学术
    16. 李剑. 基于效率提升的风机叶片优化设计和应用研究. 新型工业化. 2021(07): 165-166+168 . 百度学术

    其他类型引用(19)

计量
  • 文章访问数:  558
  • HTML全文浏览量:  66
  • PDF下载量:  251
  • 被引次数: 35
出版历程
  • 收稿日期:  2018-06-13
  • 修回日期:  2018-12-19
  • 刊出日期:  2019-10-24

目录

    /

    返回文章
    返回