[1] |
World Wind Energy Association. Wind power capacity worldwide reaches 600 GW, 53.9 GW added in 2018[EB/OL]. https://wwindea.org/blog/2019/02/25/windpower-capacity-worldwide-reaches-600-gw-539-gw-added-in-2018,2019-02-25.
|
[2] |
Jamieson P. Innovation in wind turbine design[M]. Chichester:Wiley, 2011:75-104.
|
[3] |
Griffith D T, Ashwill T D. The sandia 100-meter all-glass baseline wind turbine blade:SNL100-00[R]. Albuquerque:Sandia National Laboratories, 2011.
|
[4] |
Fichaux N, Beurskens J, Jensen P H, et al. Design limits and solutions for very large wind turbines:A 20 MW turbine is feasible[R]. Brussels:European Wind Energy Association, 2011.
|
[5] |
Ichter B, Steele A, Loth E, et al. Structural design and analysis of a segmented ultralight morphing rotor (SUMR) for extreme-scale wind turbines[C]//42nd AIAA Fluid Dynamics Conference and Exhibit. New Orleans:AIAA, 2012:3270.
|
[6] |
Loth E, Steele A, Ichter B, et al. Segmented ultralight pre-aligned rotor for extreme-scale wind turbines[C]//50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Nashville:AIAA, 2012:1290.
|
[7] |
Barlas T K, van Kuik G A. Review of state of the art in smart rotor control research for wind turbines[J]. Progress in Aerospace Sciences, 2010, 46(1):1-27.
|
[8] |
Konga C, Banga J, Sugiyamab Y. Structural investigation of composite wind turbine blade considering various load cases and fatigue life[J]. Energy, 2005, 30(11/12):2101-2114.
|
[9] |
Coxa K, Echtermeyerb A. Structural design and analysis of a 10 MW wind turbine blade[J]. Energy Procedia, 2012. 24:194-201.
|
[10] |
Chen J, Wang Q, Shen W Z, et al. Structural optimization study of composite wind turbine blade[J]. Materials & Design, 2013, 46:247-255.
|
[11] |
Liao C C, Zhao X L, Xu J Z. Blade layers optimization of wind turbines using FAST and improved PSO Algorithm[J]. Renewable Energy, 2012, 42:227-233.
|
[12] |
Fischer G R, Kipouros T, Savill A M. Multi-objective optimisation of horizontal axis wind turbine structure and energy production using aerofoil and blade properties as design variables[J]. Renewable Energy, 2014, 62:506-515.
|
[13] |
Sharifi A, Nobari M R H. Prediction of optimum section pitch angle distribution along wind turbine blades[J]. Energy Conversion and Management, 2013, 67:342-350.
|
[14] |
Mishnaevsky Jr L. Composite materials in wind energy technology[M/OL]//Favorsky O N. Thermal to Mechanical Energy Conversion:Engines and Requirements. Oxford:EOLSS, 2011. https://www.eolss.net/samplechapters/C08/E3-11-42.pdf.2018-09-10
|
[15] |
Prabhakaran R T D. Future materials for wind turbine blades-a critical review[C]//Proceedings of the International Conference on Wind Energy:Materials, Engineering and Policies. Andhra Pradesh:DTU, 2012:1-8.
|
[16] |
Liu W Y, Platts M J. Concept representation, practical topology decision and analysis in composites lug design[C]//Proceedings of the International Conference on Frontiers of Design and Manufacturing. Tianjin:ICFDM, 2008:636-643.
|
[17] |
Le Gourieres D. Wind power plants:theory and design[M]. Oxford:Elsevier, 2014.
|
[18] |
Lobitz D W, Veers P S, Eisler G R, et al. The use of twist-coupled blades to enhance the performance of horizontal axis wind turbines[R]. Albuquerque:Sandia National Laboratories, 2001.
|
[19] |
Aziz S, Gale J, Ebrahimpour A, et al. Passive control of a wind turbine blade using composite material[C]//Proceedings of the ASME 2011 International Mechanical Engineering Congress & Exposition. Denver:ASME, 2011:467-476.
|
[20] |
Bottasso C L, Campagnolo F, Croce A, et al. Optimization-based study of bend-twist coupled rotor blades for passive and integrated passive/active load alleviation[J]. Wind Energy, 2013, 16:1149-1166.
|
[21] |
Rasmussen F, Petersen J T, Vølund P, et al. Soft rotor design for flexible turbines:final report[R]. Roskilde:Risø National Laboratory, 1998.
|
[22] |
Steele A, Ichter B, Qin C, et al. Aerodynamics of an ultralight load-aligned rotor for extreme-scale wind turbines[R]. Golden:National Renewable Energy Lab.(NREL), 2013.
|
[23] |
Gu R, Xu J L, Yang Y B. The Investigation of the Small Bionic Wind Turbine Based on the Seagull Airfoil[J]. Advanced Materials Research, 2011, 347:3533-3539.
|
[24] |
Zhang R K, Wu J Z. Aerodynamic characteristics of wind turbine blades with a sinusoidal leading edge[J]. Wind Energy, 2012, 15(3):407-424.
|
[25] |
Liu T, Kuykendoll K, Rhew R, et al. Avian Wing Geometry and Kinematics[J]. AIAA Journal, 2006, 44(5):954-963.
|
[26] |
Liu Wangyu, Jiaxing Gong. Adaptive bend-torsional coupling wind turbine blade design imitating the topology structure of natural plant leaves[M]//Al-Bahadly I H. Wind Turbines. Rijeka:InTech, 2011:51-86.
|
[27] |
Linscott B S, Dennett J T, Gordon L H. The Mod-2 wind turbine development project[R]. Washington:US Department of Energy, 1981.
|
[28] |
Xie W, Zeng P, Lei L. A novel folding blade of wind turbine rotor for effective power control[J]. Energy Conversion and Management, 2015, 101:52-65.
|
[29] |
Dawson M H. Variable Length Wind Turbine Blade[R]. Boise:Energy Unlimited, Inc. 2006.
|
[30] |
Lu H, Zeng P, Lei L, et al. A smart segmented blade system for reducing weight of the wind turbine rotor[J]. Energy Conversion and Management, 2014, 88:535-544.
|
[31] |
Roth Johnson P, Wirz R E. Aero-structural investigation of biplane wind turbine blades[J]. Wind Energy, 2014, 17(3):397-411.
|
[32] |
Migliore P G, Miller L, Quandt G. Wind turbine trailing edge aerodynamic brakes[R]. Golden:National Renewable Energy Laboratory, 1995.
|
[33] |
Miller S. Experimental investigation of aerodynamic devices for wind turbine rotational speed control:Phase Ⅱ[R]. Golden:National Renewable Energy Laboratory, 1996.
|
[34] |
Stuart J G, Wright A D, Butterfield C P. Considerations for an integrated wind turbine controls capability at the National Wind Technology Center:an aileron control case study for power regulation and load mitigation[R]. Golden:National Renewable Energy Laboratory, 1996.
|
[35] |
Lachenal X, Daynes S, Weaver P M. A zero torsional stiffness twist morphing blade as a wind turbine load alleviation device[J]. Smart Materials and Structures. 2013, 22(6):065016.
|
[36] |
Gaunaa M, Zahle F, Sørensen N N, et al. Quantification of the Effects of Using Slats on the Inner Part of a 10 MW Rotor[C]//Proceedings of EWEA 2012-European Wind Energy Conference & Exhibition. Copenhagen:European Wind Energy Association (EWEA), 2012:919-930.
|
[37] |
Ragheb A, Selig M. Multi-element airfoil configurations for wind turbines[C]//29th AIAA Applied Aerodynamics Conference. Honolulu:American Institute of Aeronautics and Astronautics (AIAA), 2011:3971.
|
[38] |
Narsipur S, Pomeroy B, Selig M. CFD Analysis of multielement airfoils for wind turbines[C]//30th AIAA Applied Aerodynamics Conference. New Orleans:American Institute of Aeronautics and Astronautics (AIAA), 2012:2781.
|