自复位支撑-钢框架结构直接基于位移的支撑参数设计与分析

徐龙河, 杨雪飞

徐龙河, 杨雪飞. 自复位支撑-钢框架结构直接基于位移的支撑参数设计与分析[J]. 工程力学, 2019, 36(8): 141-148. DOI: 10.6052/j.issn.1000-4750.2018.07.0406
引用本文: 徐龙河, 杨雪飞. 自复位支撑-钢框架结构直接基于位移的支撑参数设计与分析[J]. 工程力学, 2019, 36(8): 141-148. DOI: 10.6052/j.issn.1000-4750.2018.07.0406
XU Long-he, YANG Xue-fei. DIRECT DISPLACEMENT-BASED BRACE PARAMETERS DESIGN AND ANALYSES OF STEEL FRAME WITH SELF-CENTERING BRACES[J]. Engineering Mechanics, 2019, 36(8): 141-148. DOI: 10.6052/j.issn.1000-4750.2018.07.0406
Citation: XU Long-he, YANG Xue-fei. DIRECT DISPLACEMENT-BASED BRACE PARAMETERS DESIGN AND ANALYSES OF STEEL FRAME WITH SELF-CENTERING BRACES[J]. Engineering Mechanics, 2019, 36(8): 141-148. DOI: 10.6052/j.issn.1000-4750.2018.07.0406

自复位支撑-钢框架结构直接基于位移的支撑参数设计与分析

基金项目: 国家自然科学基金项目(51578058);北京市自然科学基金项目(8172038)
详细信息
    作者简介:

    杨雪飞(1993-),男,江西人,硕士生,主要从事结构抗震研究(E-mail:16121136@bjtu.edu.cn).

    通讯作者:

    徐龙河(1976-),男,黑龙江人,教授,博士,博导,主要从事结构抗震与健康监测研究(E-mail:lhxu@bjtu.edu.cn).

  • 中图分类号: TU318;TU391

DIRECT DISPLACEMENT-BASED BRACE PARAMETERS DESIGN AND ANALYSES OF STEEL FRAME WITH SELF-CENTERING BRACES

  • 摘要: 该文提出了预压碟簧自复位耗能(PS-SCED)支撑-钢框架结构的等效阻尼比公式并验证其合理性,在此基础上,采用直接基于位移的抗震设计方法对一6层PS-SCED支撑-钢框架结构的支撑参数进行设计并分析。结果表明,不考虑等效阻尼比设计的支撑刚度偏于保守,支撑承载力需求偏大,而考虑等效阻尼比设计的支撑刚度和承载力需求更小且能使结构满足预定的性能目标;在相同性能目标下,支撑刚度比对结构的位移响应影响不大,按照所提出的刚度比区间设计的支撑参数能使结构满足变形限值要求。
    Abstract: The equivalent damping ratio expression of steel frame with pre-pressed spring self-centering energy dissipation (PS-SCED) brace is proposed and validated in this paper. Then the direct displacement-based seismic design method is employed to determine the brace parameters of a 6-story PS-SCED braced frame. The results show that the designed brace stiffness is conservative and the brace bearing capacity demand is too large when the equivalent damping ratio is not considered. However, considering the equivalent damping ratio design makes the stiffness and bearing capacity demand of PS-SCED brace smaller and enables the braced frame to meet the specified performance level. Under the same performance level, the brace stiffness ratio has little effect on the structural displacement responses. Therefore, the designed brace parameters according to the proposed stiffness ratio interval are capable of making the PS-SCED braced frame meet the requirement of deformation limit.
  • [1] 郭彦林, 童精中, 周鹏. 防屈曲支撑的型式、设计理论与应用研究进展[J]. 工程力学, 2016, 33(9):1-14. Guo Yanlin, Tong Jingzhong, Zhou Peng. Research progress of buckling restrained braces:types, design methods and applications[J]. Engineering Mechanics, 2016, 33(9):1-14. (in Chinese)
    [2] Christopoulos C, Tremblay R, Kim H J, et al. Self-centering energy dissipative bracing system for the seismic resistance of structures:development and validation[J]. Journal of Structural Engineering, 2008, 134(1):96-107.
    [3] Xu L H, Fan X W, Li Z X. Experimental behavior and analysis of self-centering steel brace with pre-pressed disc springs[J]. Journal of Constructional Steel Research, 2017, 139:363-373.
    [4] Xu L H, Xie X S, Li Z X. Development and experimental study of a self-centering variable damping energy dissipation brace[J]. Engineering Structures, 2018, 160:270-280.
    [5] 梁兴文. 结构抗震性能设计理论与方法[M]. 北京:科学出版社, 2011:1-15. Liang Xingwen. Theory and approach of structural performance-based seismic design[M]. Beijing:Science Press, 2011:1-15. (in Chinese)
    [6] 姚谦峰, 常鹏. 工程结构抗震分析[M]. 北京:清华大学出版社, 2012:219-220. Yao Qianfeng, Chang Peng. Seismic analysis of engineering structures[M]. Beijing:Tsinghua University Press, 2012:219-220. (in Chinese)
    [7] Medhekar M S, Kennedy D J. Displacement-based seismic design of buildings:application[J]. Engineering Structures, 2000, 22(3):210-221.
    [8] Kowalsky M J, Priestley M. Displacement-based design of RC bridge columns in seismic regions[J]. Earthquake Engineering and Structural Dynamics, 1995, 24(12):1623-1643.
    [9] Priestley M J N, Calvi G M, Kowalsky M J. Displacement based seismic design of structures[M]. Italy:IUSS Press, 2007.
    [10] Lin Y Y, Tsai M H, Hwang J S, Chang K C. Direct displacement-based design for building with passive energy dissipation systems[J]. Engineering Structures, 2003, 25(1):25-37
    [11] 李钢, 李宏男. 基于位移的消能减震结构抗震设计方法[J]. 工程力学, 2007, 24(9):88-94. Li Gang, Li Hongnan. Direct displacement-based design for buildings with passive energy dissipation devices[J]. Engineering Mechanics, 2007, 24(9):88-94. (in Chinese)
    [12] 杨博雅, 吕西林. 预应力预制混凝土剪力墙结构直接基于位移的抗震设计方法及应用[J]. 工程力学, 2018, 35(2):59-66, 75. Yang Boya, Lü Xilin. Direct diaplacement-based aseismic design and application for prestressed precast concrete shear-wall structures[J]. Engineering Mechanics, 2018, 35(2):59-66, 75. (in Chinese)
    [13] 徐龙河, 樊晓伟, 逯登成, 等. 预压弹簧自恢复耗能支撑恢复力模型与滞回特性研究[J]. 工程力学, 2016, 33(10):116-121. Xu Longhe, Fan Xiaowei, Lu Dengcheng, et al. Study on restoring force model and hysteretic behaviors of pre-pressed spring self-centering energy dissipation[J]. Engineering Mechanics, 2016, 33(10):116-121. (in Chinese)
    [14] 徐龙河, 樊晓伟, 代长顺, 等. 预压弹簧自恢复耗能支撑受力性能分析与试验研究[J]. 建筑结构学报, 2016, 37(9):142-148. Xu Longhe, Fan Xiaowei, Dai Changshun, et al. Mechanical behavior analysis and experimental study on pre-pressed spring self-centering energy dissipation brace[J]. Journal of Building Structures, 2016, 37(9):142-148. (in Chinese)
    [15] Dwairi H M, Kowalsky M J, Nau J M. Equivalent damping in support of direct displacement-based design[J]. Journal of Earthquake Engineering, 2007, 11(4):512-530.
    [16] 胡聿贤. 地震工程学[M]. 北京:地震出版社, 2006:315-318. Hu Yuxian. Earthquake engineering[M]. Beijing:Seismological Press, 2006:315-318. (in Chinese)
    [17] GB50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB50011-2010, Seismic design code for buildings[S]. Beijing:China Architectural Industry Press, 2010. (in Chinese)
    [18] 冯玉龙. 基于损伤控制的屈曲约束支撑框架多指标评价及设计方法研究[D]. 南京:东南大学, 2016. Feng Yulong. Research on damage control based mutil-index evaluation and design method of buckling-restrained braced frames[D]. Nanjing:Southeast University, 2016. (in Chinese)
    [19] 吕洋, 熊峰, 葛琪. 基于非弹性位移的土-结构相互作用的抗震设计方法[J]. 工程科学与技术, 2018, 50(3):142-148. Lü Yang, Xiong Feng, Ge Qi. Inelastic displacementbased seismic design method for soil-structure interaction systems[J]. Advanced Engineering Sciences. 2018, 50(3):142-148. (in Chinese)
  • 期刊类型引用(16)

    1. FENG Xian-dao,ZHANG Zuo-jin,FANG Hui,LI Hua-jun. Seismic Performance of a Circular Steel Tube-RC Structure with UHPC Grouted Filled. China Ocean Engineering. 2025(01): 111-124 . 必应学术
    2. 姜磊,刘永健,周绪红,陈宝春,牟廷敏,刘君平,陈洪明. 钢管混凝土组合结构桥梁设计原理与技术发展综述. 中国公路学报. 2025(03): 278-302 . 百度学术
    3. 杜国锋,曹煊,谢向东,张继承. 高强钢管超高性能混凝土界面黏结滑移性能试验. 河南理工大学学报(自然科学版). 2024(01): 180-188 . 百度学术
    4. 李俊华,王维宸,周春恒,陈志辉. 冻融循环环境下方钢管混凝土粘结强度试验研究. 工程力学. 2024(S1): 206-214 . 本站查看
    5. 冯先导,刘聪聪,林红星. 预制桩芯桩帽结构承载性能及安装工艺试验研究. 水运工程. 2024(11): 215-220 . 百度学术
    6. 朱张峰,RICHARD Liew,杜咏,姚兵. 装配式组合结构柱高强钢管连接节点界面黏结性能试验. 工业建筑. 2023(04): 120-124+179 . 百度学术
    7. 王占锋,谢东武. 超高强钢筋混凝土抗腐蚀性影响因素研究. 科技通报. 2022(01): 77-83 . 百度学术
    8. 廖栩,李吉人,王庆利. 轴压荷载下中空夹层钢管混凝土抗扭性能试验研究. 建筑结构. 2022(06): 90-96+125 . 百度学术
    9. 曾彦钦,徐礼华,吴方红,余敏,池寅. 钢管含粗骨料超高性能混凝土短柱轴压性能研究. 工程力学. 2022(10): 68-78 . 本站查看
    10. 王秋维,梁林,史庆轩,王朋. 方钢管超高性能混凝土界面黏结滑移性能. 湖南大学学报(自然科学版). 2022(11): 116-125 . 百度学术
    11. 程高,张之恒,谢亮,姬子田. 基于桁梁实桥试验的钢管混凝土界面传力机制. 交通运输工程学报. 2022(06): 158-168 . 百度学术
    12. 张萍. 水工建筑物超高强混凝土抗腐蚀性能的影响规律研究. 黑龙江水利科技. 2022(11): 35-39 . 百度学术
    13. 高春彦,原淼淼,王佳丽,孙凯琦,赵宁. 钢管UHPC界面粘结滑移力学性能研究. 建筑结构. 2022(S2): 1369-1374 . 百度学术
    14. 谢磊,李庆华,徐世烺. 冲击荷载下免蒸养活性粉末混凝土分形特征研究. 工程力学. 2021(03): 169-180 . 本站查看
    15. 廖栩,李吉人,王庆利. 压-扭作用下中空夹层钢管混凝土的破坏机理分析. 混凝土与水泥制品. 2021(12): 67-74 . 百度学术
    16. 陈宝春,李莉,罗霞,韦建刚,赖秀英,刘君平,丁庆军,李聪. 超高强钢管混凝土研究综述. 交通运输工程学报. 2020(05): 1-21 . 百度学术

    其他类型引用(23)

计量
  • 文章访问数:  496
  • HTML全文浏览量:  44
  • PDF下载量:  92
  • 被引次数: 39
出版历程
  • 收稿日期:  2018-07-18
  • 修回日期:  2018-09-11
  • 刊出日期:  2019-08-24

目录

    /

    返回文章
    返回