[1] |
白冰, 刘大鹏. 非饱和介质中热能传输及水分迁移的数值积分解[J]. 岩土力学, 2006, 27(12):2085-2089. Bai Bing, Liu Dapeng. Numerical integral solutions of heat transfer and moisture transport in unsaturated porous media[J]. Rock and Soil Mechanics, 2006, 27(12):2085-2089. (in Chinese)
|
[2] |
陈佩佩, 白冰. 非饱和土中温度引起水分迁移的光滑粒子法数值模拟[J]. 工程力学, 2016, 33(4):150-156. Chen Peipei, Bai Bing. SPH numerical simulation of moisture migration caused by temperature in unsaturated soils[J]. Engineering Mechanics, 2016, 33(4):150-156. (in Chinese)
|
[3] |
Selvadurai A P S. Heat-induced moisture movement in a clay barrier. Computational modelling and Ⅱ comparison with experimental results[J]. Engineering Geology, 1996, 41(1):219-238.
|
[4] |
郭庆荣, 李玉山. 非恒温条件下土壤中水热耦合运移过程的数学模拟[J]. 中国农业大学学报, 1997, 2(增刊1):33-38. Guo Qingrong, Li Yushan. Mathematical simulation of heat ans water coupling flow in soil under unsteady temperature[J]. Journal of China Agricultural University, 1997, 2(Suppl 1):33-38. (in Chinese)
|
[5] |
毛卫南, 刘建坤. 不同离散化方法在正冻土水热耦合模型中的应用[J]. 工程力学, 2013, 30(10):128-132. Mao Weinan, Liu Jiankun. Different discretization method using coupled water and heat transport mode for soil under freezing conditions[J]. Engineering Mechanics, 2013, 30(10):128-132. (in Chinese)
|
[6] |
Liu B C, Liu W, Peng S W. Study of heat and moisture transfer in soil with a dry surface layer[J]. International Journal of Heat and Mass Transfer, 2005, 48(21):4579-4589.
|
[7] |
Gan Guohui. Dynamic thermal performance of horizontal ground source heat pumps-The impact of coupled heat and moisture transfer[J]. Energy, 2018, 152:877-887.
|
[8] |
陈黎. 能源与环境学科中的多尺度多物理化学耦合反应输运过程数值模拟研究[D]. 西安:西安交通大学, 2013. Chen Li. Numerical investigation of multiscale multiple physicochemical coupled reactive transport processed in energy and environmental discipline[D]. Xi'an:Xi'an Jiaotong University, 2013. (in Chinese)
|
[9] |
Lin Qi, Wang shugang, Ma zhenjun, et al. Lattice Boltzmann simulation of flow and heat transfer evolution inside encapsulated phase change materials due to natural convection melting[J]. Chemical Engineering Science, 2018, 189:154-164.
|
[10] |
Gao Dongyan, Chen Zhenqian, Chen Linghai, et al. A modified lattice Boltzmann model for conjugate heat transfer in porous media[J]. International Journal of Heat and Mass Transfer, 2017, 105:673-683.
|
[11] |
田智威, 谭云亮. 含喉部裂隙介质CO2反应迁移的格子Boltzmann模拟研究[J]. 岩土力学, 2017, 38(3):663-671. Tian Zhiwei, Tan Yunliang. Lattice Boltzmann simulation of CO2 reactive transport in throat fractured media[J]. Rock of Soil Mechanics, 2017, 38(3):663-671. (in Chinese)
|
[12] |
刘克同, 汤爱平, 曹鹏. 桥梁气动导数的格子Boltzmann大涡模拟仿真[J]. 工程力学, 2015, 32(5):111-119. Liu Ketong, Tang Aiping, Cao Peng. Large eddy simulation of the aerodynamic derivatives of bridge using lattice Boltzmann method[J]. Engineering Mechanics, 2015, 32(5):111-119. (in Chinese)
|
[13] |
刘建刚, 刘泉, 周冬冬, 等. 地下水横向水平流速对人工水平冻结壁形成的影响[J]. 应用基础与工程科学学报, 2017, 25(2):258-265. Liu Jiangang, Liu Quan, Zhou Dongdong, et al. Influence of groundwater transverse horizontal flow velocity on the formation of artificial horizontal freezing wall[J]. Journal of Basic Science and Engineering, 2017, 25(2):258-265. (in Chinese)
|
[14] |
夏锦红, 陈之祥, 夏元友, 等. 不同负温度条件下冻土导热系数的理论模型和试验验证[J].工程力学, 2018, 35(5):109-117. Xia Jinhong, Chen Zhixiang, Xia Yuanyou, et al. Theoretical model and experimental verification on thermal conductivity of frozen soil under different negative temperature conditions[J]. Engineering Mechanics, 2018, 35(5):109-117. (in Chinese)
|
[15] |
Wang Moran, Wang Jinku, Pan Ning, et al. Mesoscopic predictions of the effective thermal conductivity for microscale random porous media[J]. Physical Review E, 2007, 75(3):036702-1-036702-10.
|
[16] |
Guo Zhaoli, Zheng Chuguang, Shi Baochang. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method[J]. Chinese Physics, 2002, 11(4):366-374.
|
[17] |
Song Wenyu, Zhang Yaning, Li Bingxi, et al. A lattice Boltzmann model for heat and mass transfer phenomena with phase transformations in unsaturated soil during freezing process[J]. International Journal of Heat and Mass Transfer, 2016, 94:29-38.
|