考虑频率参数协调的频率相关等效线性化方法

王笃国, 赵成刚

王笃国, 赵成刚. 考虑频率参数协调的频率相关等效线性化方法[J]. 工程力学, 2019, 36(9): 169-179. DOI: 10.6052/j.issn.1000-4750.2018.08.0471
引用本文: 王笃国, 赵成刚. 考虑频率参数协调的频率相关等效线性化方法[J]. 工程力学, 2019, 36(9): 169-179. DOI: 10.6052/j.issn.1000-4750.2018.08.0471
WANG Du-guo, ZHAO Cheng-gang. FREQUENCY-DEPENDENT EQUIVALENT LINEAR METHOD FOR SEISMIC SITE RESPONSE CONSIDERING THE COMPATIBILITY OF FREQUENCY PARAMETERS[J]. Engineering Mechanics, 2019, 36(9): 169-179. DOI: 10.6052/j.issn.1000-4750.2018.08.0471
Citation: WANG Du-guo, ZHAO Cheng-gang. FREQUENCY-DEPENDENT EQUIVALENT LINEAR METHOD FOR SEISMIC SITE RESPONSE CONSIDERING THE COMPATIBILITY OF FREQUENCY PARAMETERS[J]. Engineering Mechanics, 2019, 36(9): 169-179. DOI: 10.6052/j.issn.1000-4750.2018.08.0471

考虑频率参数协调的频率相关等效线性化方法

基金项目: 中国地震局地震科技星火计划攻关项目(XH18060);国家重点研发计划项目(2017YFC1500403-07);国家自然科学基金项目(51478135)
详细信息
    作者简介:

    赵成刚(1955-),男,黑龙江人,教授,博士,博导,主要从事土动力学和防灾减灾研究(E-mail:cgzhao@bjtu.edu.cn).

    通讯作者:

    王笃国(1979-),男,山东人,副研究员,博士,主要从事土动力学和场地地震反应分析方法研究(E-mail:wangduguo@163.com).

  • 中图分类号: P315.9

FREQUENCY-DEPENDENT EQUIVALENT LINEAR METHOD FOR SEISMIC SITE RESPONSE CONSIDERING THE COMPATIBILITY OF FREQUENCY PARAMETERS

  • 摘要: 基于土动力试验呈现出的土体动参数频率相关特性,结合一维等效线性化理论,建立了能够考虑动三轴或共振柱测试频率Rf和波速测试频率fvs)相协调的频率相关等效线性化方法。首先,基于国内外不同学者的试验结果,回归建立了土体剪切模量-频率和阻尼比-频率关系式,推导得到了规准化频率相关土体剪切模量比和阻尼比随剪应变变化关系式;其次,对频率无关等效线性化方法进行了改进,传递函数采用频率相关的剪切模量和阻尼比,建立了频率相关的等效线性化方法;最后,采用频率相关和频率无关等效线性化方法,分别对单层覆盖层均质线性场地和单层覆盖层非线性场地进行了不同工况下的土层地震反应分析计算,计算结果表明:1)试验室土动力性能参数测试频率Rf对地震响应影响较大,波速测试频率fvs)影响较小;2)采用动三轴试验给出的土动参数,频率相关方法得到的结果略低于频率无关方法结果。采用共振柱试验给出的土动参数,频率相关方法得到的结果大幅高于频率无关方法结果。
    Abstract: Based on frequency-dependent soil behavior demonstrated by laboratory tests and equivalent linearization theory, 1D frequency-dependent equivalent linear method for seismic site response is established, considering the parameter compatibility between the frequency Rf for laboratory dynamic tri-axial test or resonant column test and the frequency f(vs) for shear wave test. Firstly, using the laboratory results given by researchers, the frequency-dependent soil constitute models are proposed through data regression methods, and the formula describing normalized frequency-dependent shear modulus reduction and damp ratio curves with shear strain are deduced. Then, frequency-dependent equivalent linear method is developed by employing frequency-dependent shear modulus and damp ratio in transfer function for the frequency-independent equivalent linear method. Lastly, by using frequency-dependent and frequency-independent methods, linear response for a single-layered site and nonlinear response for another single-layered site under different cases are conducted, and results show that:1) laboratory test frequency Rf has a great impact on site response and shear wave test frequency f(vs) has a minor effect on site response; 2) if the input parameters of shear modulus and damp ratio are obtained by dynamic tri-axial tests, the results obtained by frequency-dependent methods are slightly lower than that obtained by frequency-independent methods; if the parameters are obtained by resonant column tests, the results obtained by frequency-dependent methods are much higher than that obtained by frequency-independent methods.
  • [1] Chin B H, Aki K. Simultaneous study of the source, path, and site effects on strong ground motion during the 1989 Loma Prieta earthquake:a preliminary result on pervasive nonlinear site effects[J]. Bulletin of the Seismological Society of America, 1991, 81(5):1859-1884.
    [2] Field E H, Johnson P A, Beresnev I A, et al. Nonlinear ground-motion amplification by sediments during the 1994 Northridge earthquake[J]. Nature, 1997, 390(6660):599-602.
    [3] Beresnev I A, Atkinson G M. Stochastic finite-fault modeling of ground motions from the 1994 Northridge, California, earthquake. I. Validation on rock sites[J]. Bulletin of the Seismological Society of America, 1998, 88(6):1392-1401.
    [4] Kwok A O L, Stewart J P, Hashash Y M A. Nonlinear ground-response analysis of Turkey flat shallow stiff-soil site to strong ground motion[J]. Bulletin of the Seismological Society of America, 2008, 98(1):331-343.
    [5] Elia G, Rouainia M, Karofyllakis D, et al. Modelling the non-linear site response at the LSST down-hole accelerometer array in Lotung[J]. Soil Dynamics and Earthquake Engineering, 2017, 102:1-14.
    [6] Schnabel P B, Lysmer J, Seed H B. SHAKE:A computer program for earthquake response analysis of horizontally layered sites[R]. EERC Report 72-12, Berkeley, University of California, Berkeley, 1972.
    [7] Streeter V L, Wylie E B, Richart F E. Soil Motion computations by characteristics method[J]. ASCE Journal of the Geotechnical Engineering Division, 1974, 100(3):247-263.
    [8] Lee M K W, Finn W D L. DESRA-1 Program for the dynamic effective stress response analysis of soil deposits including liquefaction evaluation[R]. Soils Mechanics No. 36, Vancouner, Department of Civil Engineering, University of British Columbia, Canada, 1975.
    [9] Idriss I M, Dobry R M, Doyle E H, et al. Behavior of soft clays under earthquake loading conditions[C]. Houston, ASCE Offshore Technology Conference, 1976:605-616.
    [10] Joyner W B. A fortran program for calculating nonlinear seismic ground response[R]. Reston:US Geological Survey, 1977:77-671.
    [11] Lam I, Tsai C-F, Martin G R. Determination of site dependent spectra using nonlinear analysis[C]. San Francisco, Second International Conference on Microzonation, 1978:1089-1104.
    [12] Lee M K W, Finn W D L. DESRA-2:Dynamic effective stress response analysis of soil deposits with energy transmitting boundary including assessment of liquefaction potential[R]. Soils Mechanics No. 36, Vancouner:Department of Civil Engineering, University of British Columbia, Canada, 1975.
    [13] 李小军. 非线性土层地震反应分析的一种方法[J]. 华南地震, 1992, 12(4):1-8. Li Xiaojun. A method for analyzing seismic response of nonlinear soil layers[J]. South China Journal of Seismology, 1992, 12(4):1-8. (in Chinese)
    [14] Kausel E, Assimaki D. Seismic simulation of inelastic soils via frequency-dependent moduli and damping[J]. Journal of Engineering Mechanics, 2002, 128(1):34-47.
    [15] Yoshida N, Kobayashi S, Suetomi I. Equivalent linear method considering frequency dependent characteristics of stiffness and damping[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(3):205-222.
    [16] 蒋通, 邢海灵. 水平土层地震反应分析考虑频率相关性的等效线性化方法[J]. 岩土工程学报, 2007, 29:218-224. Jian Tong, Xing Hailing. An equivalent linear method considering frequency-dependent soil properties for seismic response analysis[J]. Chinese Journal of Geotechnical Engineering, 2007, 29:218-224. (in Chinese)
    [17] Park D P, Hashash Y M A. Rate-dependent soil behavior in seismic site response analysis[J]. Canadian Geotechnical Journal, 2008, 45(4):454-469.
    [18] 王伟, 刘必灯, 周正华, 等. 刚度和频率相关的等效线性化方法[J]. 岩土力学, 2010, 31:3928-3933. Wang Wei, Liu Bideng, Zhou Zhenghua, et al. Equivalent linear method considering frequency dependent stiffness and damping[J]. Rock and Soil Mechanics, 2010, 31(12):3928-3933. (in Chinese)
    [19] 袁晓铭, 李瑞山, 孙锐. 新一代土层地震反应分析方法[J]. 土木工程学报, 2016, 49(10):95-102. Yuan Xiaoming, Li Ruishan, Sun Rui. A new generation method for earthquake response analysis of soil layers[J]. China Civil Engineering Journal, 2016, 49(10):95-102. (in Chinese)
    [20] 张季, 梁建文, 巴振宁. 水平层状饱和场地地震响应分析的等效线性化方法[J]. 工程力学, 2016, 33(10):52-61. Zhang Ji, Liang Jianwen, Ba Zhenning. Equivalent linear analysis of seismic response of horizontally layered fluid-saturated poroelastic half-space[J]. Engineering Mechanics, 2016, 33(10):52-61. (in Chinese)
    [21] Huang D, Wang G, Wang C, et al. A modified frequency-dependent equivalent linear method for seismic site response analyses and model validation using kik-net borehole arrays[J]. Journal of Earthquake Engineering, 2018, 3:1-18.
    [22] Kim D S, Stokoe K H, Hudson W R. Deformational characteristics of soils at small to intermediate strains from cyclic tests[R]. Austin:University of Texas at Austin, 1991:73-80.
    [23] Shibuya S, Mitachi T, Fukuda F, et al. Strain rate effects on shear modulus and damping of normally consolidated clay[J]. Geotechnical Testing Journal, 1995, 18(3):365-375.
    [24] Darendeli M B. Development of a new family of normalized modulus reduction and material damping curves[D]. Austin:Department of Civil Engineering, University of Texas at Austin, 2001.
    [25] Rix G J, Meng J W. A non-resonance method for measuring dynamic soil properties[J]. Geotechnical Testing Journal, 2005, 28(1):1-8.
    [26] Meng J W, Earthquake ground motion simulation with frequency-dependent soil properties[J]. Soil Dynamics and Earthquake Engineering, 2007, 27(3):234-241.
    [27] Khan Z H, Cascante G, El Naggar M H, et al. Measurement of frequency-dependent dynamic properties of soils using the resonant-column device[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(9):1319-1326.
    [28] 黎冰, 高玉峰, 丰土根. 振动频率对LCES动力特性的影响分析及其机理初探[J]. 岩土力学, 2008, 29(10):2731-2734. Li Bin, Gao Yufeng, Feng Yugen. Cyclic loading frequency effect and mechanism of lightweight clay-EPS beads soil[J]. Rock and Soil Mechanics, 2008, 29(10):2731-2734. (in Chinese)
    [29] 徐学燕, 陈亚明. 冻土的动力特性研究及其参数确定[J]. 岩土工程学报, 1998, 20(5):77-81. Xu Xueyan, Chen Yaming. Research on dynamic characters of frozen soil and determination of its parameters[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(5):77-81. (in Chinese)
    [30] 李瑞山, 陈龙伟, 袁晓铭, 等. 荷载频率对动模量阻尼比影响的试验研究[J]. 岩土工程学报, 2017, 39(1):71-80. Li Ruishan, Chen Longwei, Yuan Xiaoming, et al. Experimental study on influences of different loading frequencies on dynamic modulus and damping ratio[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1):71-80. (in Chinese)
    [31] 卢啸, 陆新征, 李梦珂, 等. 地震作用设计参数调整对框架结构抗震设计及安全性的影响[J]. 工程力学, 2017, 34(4):22-31. Lu Xiao, Lu Xinzheng, Li Mengke, et al. Influence of seismic action adjustments on seismic design and safety of RC frames[J]. Engineering Mechanics, 2017, 34(4):22-31. (in Chinese)
    [32] 朱志辉, 杨乐, 王力东, 等. 地震作用下铁路斜拉桥动力响应及行车安全性研究[J]. 工程力学, 2017, 34(4):78-87. Zhu Zhihui, Yang Le, Wang Lidong, et al. Dynamic responses and train running safety of railway cable-stayed bridge under earthquakes[J]. Engineering Mechanics, 2017, 34(4):78-87. (in Chinese)
    [33] Kiani J, Pezeshk S. Sensitivity analysis of the seismic demands of RC moment resisting frames to different aspects of ground motions[J]. Earthquake Engineering & Structural Dynamics, 2017, 46(15):2739-2755.
    [34] 孙小云, 韩建平, 党育, 等. 地震动持时对考虑梁柱节点区不同破坏模式RC框架的地震易损性影响[J]. 工程力学, 2018, 35(5):193-203. Sun Xiaoyun, Han Jianping, Dang Yu, et al. Effect of ground motion duration on seismic fragility of RC frames with different beam-column joint failure modes[J]. Engineering Mechanics, 2018, 35(5):193-203. (in Chinese)
    [35] 张锐, 成虎, 吴浩, 等. 时程分析考虑高阶振型影响的多频段地震波选择方法研究[J]. 工程力学, 2018, 35(6):162-172. Zhang Rui, Cheng Hu, Wu Hao, et al. Multi-band matching method for selection of group motions in time-history analysis considering higher modes effects[J]. Engineering Mechanics, 2018, 35(6):162-172. (in Chinese)
    [36] Molazadeh M, Saffari H. The effects of ground motion duration and pinching-degrading behavior on seismic response of SDOF systems[J]. Soil Dynamics and Earthquake Engineering, 2018, 114:333-347.
    [37] Safak E. Discrete-time analysis of seismic site amplification[J]. Journal of Engineering Mechanics, 1995, 121(7):801-809.
    [38] 廖振鹏. 地震小区划-理论与实践[M]. 北京:地震出版社, 1989:134-140. Liao Zhenpeng. Seismic microzonation:theory and practice[M]. Beijing:Seismological Press, 1989:134-140. (in Chinese)
    [39] Meng J. Earthquake ground motion simulation with frequency-dependent soil properties[J]. Soil Dynamics and Earthquake Engineering, 2007, 27(3):234-241.
    [40] Pacific Earthquake Engineering Research Center. PEER Ground Motion Database[DB]. http://ngawest2.berkeley.edu/.2017-06-28.
  • 期刊类型引用(3)

    1. 李雪菊,潘旦光,石树中. 地震作用下二维场地模态叠加等效线性化方法. 工程力学. 2023(10): 179-189 . 本站查看
    2. 何颖,丁晓凡,刘中宪,杨德健,王岱. 考虑沉积河谷非线性放大效应的空间相关多点地震动模拟. 工程力学. 2023(10): 99-111 . 本站查看
    3. 祁文睿,潘旦光,高永涛,付相球. 滞后阻尼体系地震反应的中心差分虚初始条件法. 工程力学. 2020(09): 94-102 . 本站查看

    其他类型引用(2)

计量
  • 文章访问数:  502
  • HTML全文浏览量:  75
  • PDF下载量:  53
  • 被引次数: 5
出版历程
  • 收稿日期:  2018-08-29
  • 修回日期:  2018-12-16
  • 刊出日期:  2019-09-24

目录

    /

    返回文章
    返回