内镶式滴灌管主流道水流运动特性研究

丁法龙, 茅泽育, 韩凯

丁法龙, 茅泽育, 韩凯. 内镶式滴灌管主流道水流运动特性研究[J]. 工程力学, 2019, 36(11): 248-256. DOI: 10.6052/j.issn.1000-4750.2018.11.0625
引用本文: 丁法龙, 茅泽育, 韩凯. 内镶式滴灌管主流道水流运动特性研究[J]. 工程力学, 2019, 36(11): 248-256. DOI: 10.6052/j.issn.1000-4750.2018.11.0625
DONG Fa-long, MAO Ze-yu, HAN Kai. HYDRAULIC PERFORMANCES IN MAINSTREAM OF DRIP IRRIGATION PIPE[J]. Engineering Mechanics, 2019, 36(11): 248-256. DOI: 10.6052/j.issn.1000-4750.2018.11.0625
Citation: DONG Fa-long, MAO Ze-yu, HAN Kai. HYDRAULIC PERFORMANCES IN MAINSTREAM OF DRIP IRRIGATION PIPE[J]. Engineering Mechanics, 2019, 36(11): 248-256. DOI: 10.6052/j.issn.1000-4750.2018.11.0625

内镶式滴灌管主流道水流运动特性研究

基金项目: 国家重点研发项目(2016YFC0402504)
详细信息
    作者简介:

    茅泽育(1962-),男,浙江人,教授,博士,主要从事水力学及河流动力学研究(E-mail:maozy@mails.tsinghua.edu.cn);韩凯(1995-),男,浙江人,硕士生,从事水力学及河流动力学研究(E-mail:hk17@mails.tsinghua.edu.cn).

    通讯作者:

    丁法龙(1991-),男,山东人,博士生,从事水力学及河流动力学研究(E-mail:dflaizy@163.com).

  • 中图分类号: S275.6

HYDRAULIC PERFORMANCES IN MAINSTREAM OF DRIP IRRIGATION PIPE

  • 摘要: 以质量和动量守恒定理为依据,建立了以内镶式滴灌管为例的多孔管流动数学模型,并结合水力试验数据,推导得出了内镶式滴灌管内部主流道的沿程压力分布模型。多孔管流动的数学模型表明:多孔管主流道内的压力大小及变化取决于摩阻作用和动量交换作用的相对大小,其中摩阻作用使得压力降低,动量交换作用使压力升高,多孔管压力分布模型可以归结为求解管路摩阻系数和动量交换系数。滴灌管水力试验表明:滴灌管沿程纵向流速的分布指数与滴头自身特性(流量系数、流态指数)无关,而与管路上的滴头个数呈良好的线性相关关系。以水力试验数据分析与理论推导为基础,得出动量交换系所对应的经验表达式,结合BLASIUS摩阻系数计算公式对滴灌管压力分布模型进行求解,模型预测值与实测值吻合良好。该压力分布模型中,将沿程压力分布的影响因素归结为滴灌管长径比和管首雷诺数,便于优化结构设计及确定最佳运行工况。该文可为多孔管路水力计算及变质量流动模型研究提供一定参考。
    Abstract: Based on the theorem of mass and momentum conservation, this study established an analytical model for variable mass flow, and thusly developed a mathematical expression for the longitudinal pressure distribution along the mainstream of a drip irrigation pipe combined with experimental data. The established model shows that the longitudinal pressure distribution in the drip irrigation pipe is dependent on friction head loss and momentum exchange, and that friction head loss tends to decrease the pressure and the momentum exchange tends to increase it. The solution of the longitudinal pressure distribution model is attributed to determining friction and momentum exchange coefficients. The test results show that distribution index of longitudinal velocity is independent of the characteristic parameters of the drip irrigation pipe, but linear with the number of drip emitters. The expression for the momentum exchange coefficient was obtained by theoretical derivation and regression analysis, and the friction coefficient can be calculated by Blasius formula. The analytical model for variable mass flow and the longitudinal pressure expression for the drip irrigation pipe was then solved. The calculated values of the longitudinal pressure along the drip irrigation pipe agreed well with measured values. In the longitudinal pressure expression, pressure is affected by a pipe-structure parameter (length-diameter ratio)and a flow parameter (entrance Reynolds number). The expression helps guide the structural design and optimize operating conditions, because the two parameters are both directly controllable. This study offers a new thought for the analysis of variable mass flow, and the results would provide a scientific basis for the hydraulic calculation of drip irrigation.
  • [1] Baiamonte G. Advances in designing drip irrigation laterals[J]. Agricultural Water Management, 2018, 199:157-174.
    [2] Reinders F B, Niekerk A S V. Technology smart approach to keep drip irrigation systems functional[J]. Irrigation & Drainage, 2018, 67(1):82-88.
    [3] Stoochnoff J A, Graham T, Dixon M A. Drip irrigation scheduling for container grown trees based on plant water status[J]. Irrigation Science, 2018, 36(2):1-8.
    [4] Francisco Alcon, María Dolores de-Miguel, Michael Burton. Duration analysis of adoption of drip irrigation technology in southeastern spain[J]. Technological Forecasting and Social Change, 2011, 78(6):991-1001.
    [5] 张国祥, 吴普特. 滴灌系统滴头设计水头的取值依据[J]. 农业工程学报, 2005, 21(9):20-22. Zhang Guoxiang, Wu Pute. Determination of the design working head of emitter[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2005, 21(9):20-22. (in Chinese)
    [6] Wu I P, Gitlin H M. Design of irrigation lines[J]. Technical Bulletin of the University of Hawaii, 1974a, 96(1):3-29.
    [7] Wu I P, Gitlin H M. Drip irrigation design based on uniformity[J]. Transactions of the ASAE, 1974b, 17(3):429-432.
    [8] Wu I P. A uni-plot for drip irrigation lateral and submain design[J]. Transactions of the ASAE, 1985, 28(2):522-528.
    [9] Jain S K, Singh K K, Singh R P, et al. Micro-irrigation lateral design using lateral discharge equation[J]. Journal of Irrigation and Drainage Engineering, 2002, 128(2):125-128.
    [10] Kang Y. H., Nishiyam A. S. Design of micro-irrigation sub-main units[J]. ASCE. Journal of Irrigation and Drainage Engineering, 1996, 122(2):83-89.
    [11] Kang Y H, Nishiyama S. Hydraulic analysis of microirrigation submain nuits[J]. Transactions of the ASAE, 1995, 38(5):1377-1384.
    [12] Kang Y H, Nishiyama S. A simplified method for design of microirrigation laterals[J]. Transactions of the ASAE, 1996d, 39(5):1681-1687.
    [13] Demir V, Yurdem H, Degirmencioglu A, et al. Development of prediction models for friction losses in drip irrigation laterals equipped with integrated in-line and on-line emitters using dimensional analysis[J]. Bio-systems Engineering, 2007, 96(4):617-631.
    [14] Wang Y, Zhu D, Lin Z. Dimensional analysis for estimating the local head losses in trickle laterals equipped with integrated in-line emitters[J]. Journal of Hydraulic Engineering, 2015, 46(5):602-611.
    [15] Gomes A W A, Frizzone J A, Rettore Neto O, et al. Local head losses for integrated drippers in polyethylene pipes[J]. Engenharia Agrícola, 2010, 30(3):435-446.
    [16] Zitterell D B, Frizzone J A, Neto O R. Dimensional analysis approach to estimate local head losses in microirrigation connectors[J]. Irrigation Science, 2014, 32(3):169-179.
    [17] Zitterell D B, Frizzone J A, Neto O R. Dimensional analysis approach to estimate local head losses in microirrigation connectors[J]. Irrigation Science, 2014, 32(3):169-179.
    [18] Sadeghi S H, Peters R T, Lamm F R. Design of Zero Slope Microirrigation Laterals:Effect of the Friction Factor Variation[J]. Journal of Irrigation & Drainage Engineering, 2015, 141(10):04015012.
    [19] 王新坤. 基于二分法的微灌毛管水力设计[J]. 排灌机械工程学报, 2007, 25(6):27-30. Wang Xinkun. Hydraulic design of micro-irrigation laterals based on bisection method[J]. Drainage and Irrigation Machinery, 2007, 25(6):27-30. (in Chinese)
    [20] 白丹, 王新. 基于遗传算法的多孔变径管优化设计[J]. 农业工程学报, 2005, 21(2):42-45. Bai Dan, Wang Xin. Optimum design for tapered diameter pipeline with multiple outlets based on genetic algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(2):42-45. (in Chinese)
    [21] Martí P, Provenzano G, Royuela Á, et al. Integrated emitter local loss prediction using artificial neural networks[J]. Journal of Irrigation & Drainage Engineering, 2010, 136(1):11-22.
    [22] Provenzano G, Dio P D, Salvador G P. New computational fluid dynamic procedure to estimate friction and local losses in coextruded drip laterals[J]. Journal of Irrigation and Drainage Engineering, 2007, 133(6):520-527.
    [23] 王福军, 王文娥. 滴头流道CFD分析的研究进展与问题[J]. 农业工程学报, 2006, 22(7):188-192. Wang Fujun, Wang Wen'e. Research progress in analysis of flow passage in irrigation emitters using computational fluid dynamics techniques[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(7):188-192. (in Chinese)
    [24] 王新坤, 许文博, 赵坤,等. 基于CFD的多孔管热风数值模拟与设计方法[J]. 排灌机械工程学报, 2011, 29(1):82-86. Wang Xinkun, Xu Wenbo, Zhao Kun, et al. Numerical simulation and design method of hot air for porous pipe based on CFD[J]. Drainage and Irrigation Machinery, 2011, 29(1):82-86. (in Chinese)
    [25] 丁法龙, 茅泽育, 王文娥,等. 滴灌管主流道沿程压力分布模型及验证[J]. 农业工程学报, 2019, 35(3):117-124. Ding Falong, Mao Zeyu, Wang Wen'e, et.al. Modelling and verification of pressure distribution along mainstream in drip irrigation pipe[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(3):117-124. (in Chinese)
    [26] McNown J S. Mechanics of manifold flow[J]. Transactions of the American Society of Civil Engineers, 1954, 119(7):1103-1118.
    [27] 杜涛, 刘焕芳, 金瑾. 沿程出流多孔流体分布管压力分布特性[J]. 化学工程, 2014, 42(9):48-52. Du Tao, Liu Huanfang, Jin Jin. Pressure distribution characteristics of perforated pipe outflow along pipeline[J]. Chemical Engineering (China), 2014, 42(9):48-52. (in Chinese)
    [28] Bagarello V, Ferro V, Provenzano G, et al. Evaluating pressure losses in drip-irrigation lines[J]. Journal of Irrigation & Drainage Engineering, 1997, 123(1):1-7.
    [29] Pumo D, Provenzano G. Experimental Analysis of Local Pressure Losses for Microirrigation Laterals[J]. Journal of Irrigation & Drainage Engineering, 2004, 130(4):318-324.
  • 期刊类型引用(25)

    1. 李祚华,田得元,芦静夫,田春雨,赵英男,曾庆瀚,滕军. 全装配式L形截面双面叠合剪力墙抗震性能试验研究. 建筑结构学报. 2025(01): 61-72 . 百度学术
    2. 李欣. 建筑工程叠合式剪力墙连接方式及其抗震性能研究. 砖瓦. 2025(02): 71-74 . 百度学术
    3. 练陟. 装配式干式连接剪力墙力学性能分析. 江西建材. 2025(02): 50-51+58 . 百度学术
    4. 胡军,曹旭韬,洪志滨,黄旻. 设置钢筋桁架后浇带的全预制装配式板抗剪及抗弯性能研究. 江西建材. 2024(11): 289-292 . 百度学术
    5. 郑建建,卢辰,许大鹏. 双面叠合板装配整体式混凝土水池设计及应用. 特种结构. 2023(02): 78-81 . 百度学术
    6. 赵永强,郑志远,张鹏远,张裕锦,徐琪,徐一鸣. 考虑预制填充墙影响的装配式剪力墙抗震性能试验研究. 工业建筑. 2023(01): 108-120 . 百度学术
    7. 郑志远,王磊,张裕锦. 带外部填充墙的装配式剪力墙结构抗震性能研究. 武汉理工大学学报. 2023(04): 88-96 . 百度学术
    8. 汪梦甫,李柳红. 带钢板暗支撑叠合板式剪力墙恢复力模型研究. 地震工程与工程振动. 2023(03): 87-96 . 百度学术
    9. 赵永强,郑志远,谢晶晶,蒋智刚,李思,张裕锦,何晴. 外围护PC填充墙对装配式剪力墙结构受力性能影响研究. 工业建筑. 2023(S1): 197-202+156 . 百度学术
    10. 卢煜,刘明蓉,周渝,霍海娥. 装配式建筑外围护结构节能技术研究综述. 西华大学学报(自然科学版). 2023(06): 93-103 . 百度学术
    11. 张鹏飞,初明进,钱增志,周大兴,李爱群,王博,董磊,刘继良. 钢筋模板一体化剪力墙受弯性能试验研究. 建筑结构学报. 2022(03): 128-137 . 百度学术
    12. 阮晓光,王锋. 带暗支撑单面叠合板式混凝土剪力墙抗震性能数值分析. 兰州工业学院学报. 2022(01): 19-23 . 百度学术
    13. 周桐,周建民,刘超. 装配式剪力墙按节点刚度的分类方法研究. 安徽建筑. 2022(04): 56-59+80 . 百度学术
    14. 马巍,常红亮,张阳,王媛,徐凯. 基于不同竖向拼缝位置的单面叠合板式剪力墙抗震性能研究. 沈阳建筑大学学报(自然科学版). 2022(04): 664-672 . 百度学术
    15. 沈绍冬,苏宇坤,潘鹏. 装配式干式连接剪力墙的设计方法研究. 工程力学. 2022(10): 182-189+199 . 本站查看
    16. 赵永强,郑志远,潘寒,孙克平,胡中平,徐琪. 考虑预制填充墙影响的装配式剪力墙结构抗震性能有限元研究. 建筑结构. 2022(S2): 1461-1467 . 百度学术
    17. 种迅,陈子星,蒋庆,黄俊旗,李浩然,方小文,谢锦宸. 螺栓连接装配式混凝土剪力墙抗震性能研究. 工业建筑. 2022(11): 12-18+90 . 百度学术
    18. 种迅,周江南,叶献国,解琳琳,王德才,蒋庆,黄俊旗. 叠合剪力墙结构研究进展. 工业建筑. 2022(11): 1-11+110 . 百度学术
    19. 易苗苗,吴韬. 含不同高度窗下墙的预制剪力墙结构抗震性能研究. 安徽建筑大学学报. 2021(03): 59-63 . 百度学术
    20. 董格,谷倩,谭园,田水,高洪远. 水平接缝连接方式对双面叠合剪力墙抗震性能影响的试验研究. 振动与冲击. 2020(02): 107-114 . 百度学术
    21. 汪耀宇,胡元超. 叠合板式剪力墙竖向拼缝构造措施性能分析. 兰州工业学院学报. 2020(03): 1-5 . 百度学术
    22. 王文静,刘春原,苗玮,赵献辉,朱楠. 装配式剪力墙结构抗震试验研究. 世界地震工程. 2019(02): 203-208 . 百度学术
    23. 王二成,王向阳,杨宝坤,郑贤贤,张京军. 低层装配式墙体水平缝坐浆连接抗剪性能试验研究. 河北工程大学学报(自然科学版). 2019(04): 1-6 . 百度学术
    24. 苏宇坤,沈绍冬,龚润华,王海深,潘鹏. 装配式干式连接剪力墙结构中楼板性能试验研究. 工程力学. 2019(12): 106-112+144 . 本站查看
    25. 薛伟辰,胡翔. 预制混凝土剪力墙结构体系研究进展. 建筑结构学报. 2019(02): 44-55 . 百度学术

    其他类型引用(40)

计量
  • 文章访问数:  286
  • HTML全文浏览量:  40
  • PDF下载量:  70
  • 被引次数: 65
出版历程
  • 收稿日期:  2018-11-19
  • 修回日期:  2019-09-22
  • 刊出日期:  2019-11-24

目录

    /

    返回文章
    返回