橡胶隔振器高频动态特性的计算方法

唐安特, 上官文斌, 潘孝勇, 刘文帅, 何青, AHMED Waizuddin

唐安特, 上官文斌, 潘孝勇, 刘文帅, 何青, AHMED Waizuddin. 橡胶隔振器高频动态特性的计算方法[J]. 工程力学, 2020, 37(1): 230-238. DOI: 10.6052/j.issn.1000-4750.2019.02.0059
引用本文: 唐安特, 上官文斌, 潘孝勇, 刘文帅, 何青, AHMED Waizuddin. 橡胶隔振器高频动态特性的计算方法[J]. 工程力学, 2020, 37(1): 230-238. DOI: 10.6052/j.issn.1000-4750.2019.02.0059
TANG An-te, SHANGGUAN Wen-bin, PAN Xiao-yong, LIU Wen-shuai, HE Qing, AHMED Waizuddin. COMPUTATIONAL METHOD FOR THE DYNAMIC PROPERTIES OF RUBBER ISOLATORS[J]. Engineering Mechanics, 2020, 37(1): 230-238. DOI: 10.6052/j.issn.1000-4750.2019.02.0059
Citation: TANG An-te, SHANGGUAN Wen-bin, PAN Xiao-yong, LIU Wen-shuai, HE Qing, AHMED Waizuddin. COMPUTATIONAL METHOD FOR THE DYNAMIC PROPERTIES OF RUBBER ISOLATORS[J]. Engineering Mechanics, 2020, 37(1): 230-238. DOI: 10.6052/j.issn.1000-4750.2019.02.0059

橡胶隔振器高频动态特性的计算方法

详细信息
    作者简介:

    唐安特(1994-),男,广东湛江人,硕士生,主要从事汽车振动分析与控制研究、有限元分析等研究(E-mail:tangante@163.com);潘孝勇(1980-),男,浙江人,博士,主要从事汽车减振件开发等研究(E-mail:pan@tuopu.com);刘文帅(1994-),男,江西上饶人,硕士生,主要从事汽车振动分析与控制等研究(E-mail:546889957@qq.com);何青(1988-),女,浙江北仑人,主要从事汽车减振件设计研究(E-mail:heqing@tuopu.com);AHMED Waizuddin(1963-),男,加拿大人,教授,博士,主要从事主动转向系统及其控制策略等研究(E-mail:w_ahmed@encs.concordia.ca).

    通讯作者:

    上官文斌(1963-),男,湖北荆门人,教授,博士,主要从事汽车振动分析与控制研究、有限元分析等研究(E-mail:sgwb@163.com).

  • 中图分类号: TB535.1

COMPUTATIONAL METHOD FOR THE DYNAMIC PROPERTIES OF RUBBER ISOLATORS

  • 摘要: 该文采用一种由Mooney-Rivlin模型和多个Maxwell模型叠加组成的非线性粘弹性本构模型,用于计算橡胶隔振器的高频动态特性。该文给出了在时域和频域范围内拟合本构模型中粘弹性参数的方法,利用拟合得到的本构模型参数,对某款橡胶悬置跨点动态特性进行计算,并与实验结果进行对比。该文还建立了橡胶隔振器等效力学模型,分析了原点动刚度和跨点动刚度的区别,分析表明:使用跨点动态特性测试法可消除测试中附加惯性力的影响,适用于橡胶隔振器高频动特性的测试;同时,该文搭建了橡胶隔振器有限元模型,分别用于分析其跨点动刚度与原点动刚度,并将分析结果与实验结果进行对比,分析结果验证了有限元模型和力学模型的正确性。除此之外,该文还分析对比了时域(松弛、蠕变)和频域(简谐动态试验)拟合粘弹性参数方法的优缺点。
    Abstract: To predict the dynamic properties of rubber isolators, a nonlinear viscoelastic model consisting of the Mooney-Rivlin model and multiple Maxwell models is proposed in this paper. The method of fitting the viscoelastic parameters in the time domain and frequency domain is given. Using the estimated model parameters and the developed finite element model, the dynamic characteristics of a rubber mount are calculated and compared with experimental results. In addition, we set up an equivalent mechanical model of the dynamic stiffness of rubber isolators and analyze the difference between the original point dynamic stiffness and the cross-point dynamic stiffness. The results show that the influence of the additional inertia force in the test can be eliminated by using the cross-point dynamic test method, which is suitable for the test of the dynamic characteristics of the rubber isolators. Meanwhile, a finite element model of rubber isolators is built to analyze the cross-point dynamic stiffness and original point dynamic stiffness. The analysis results are compared with the experimental results to verify the correctness of the finite element model and the mechanical model. The advantages and disadvantages of three methods for fitting the viscoelastic parameters in the time domain (relaxation and creep) and frequency domain (simple harmonic dynamic test) are analyzed.
  • [1] 何小静, 上官文斌. 橡胶隔振器静态力-位移关系计算方法的研究[J]. 振动与冲击, 2012, 31(11):91-97. He Xiaojing, Shangguan Wenbin. Calculating methods for force versus displacement relation of a rubber isolator[J]. Journal of Vibration and Shock, 2012, 31(11):91-97. (in Chinese)
    [2] Kaya N, Erkek M Y, Caner G ü ven. Hyperelastic modelling and shape optimisation of vehicle rubber bushings[J]. International Journal of Vehicle Design, 2016, 71(1/2/3/4):212-225.
    [3] 魏志刚, 陈效华, 吴沈荣, 等. 汽车控制臂衬套在整车工况下的有限元仿真[J]. 工程力学, 2016, 33(5):234-240. Wei Zhigang, Chen Xiaohua, Wu Shenrong, et al. Finite element simulation of rubber bushing of automobile control arm in under full vehicle loading condition[J]. Engineering Mechanics, 2016, 33(5):234-240. (in Chinese)
    [4] Shoyama T, Fujimoto K. Direct measurement of high-frequency viscoelastic properties of pre-deformed rubber[J]. Polymer Testing, 2018, 67:399-408.
    [5] Lee Y H, Kim J S, Kim K J, et al. Prediction of dynamic stiffness on rubber components considering preloads[J]. Materialwissenschaft und Werkstofftechnik, 2013, 44(5):372-379.
    [6] Park S W. Analytical modeling of viscoelastic dampers for structural and vibration control[J]. International Journal of Solids and Structures, 2001, 38(44/45):8065-8092.
    [7] Lee H S, Shin J K, Msolli S, et al. Prediction of the dynamic equivalent stiffness for a rubber bushing using the finite element method and empirical modeling[J]. International Journal of Mechanics and Materials in Design, 2017, 15(1):77-91.
    [8] Khajehsaeid H, Baghani M, Naghdabadi R. Finite strain numerical analysis of elastomeric bushings under multi-axial loadings:A compressible visco-hyperelastic approach[J]. International Journal of Mechanics & Materials in Design, 2013, 9(4):385-399.
    [9] 李占龙, 孙大刚, 燕碧娟, 等. 考虑形状参数的分数黏弹性振子频响特性[J]. 工程力学, 2017, 34(2):232-240. Li Zhanlong, Sun Dagang, Yan Bijuan, et al. Frequency response of fractional viscoelastic oscillator considering geometric factor[J]. Engineering Mechanics, 2017, 34(2):232-240. (in Chinese)
    [10] Rickard Ö, Wentzel H, Kari L, et al. Constitutive modelling of the amplitude and frequency dependency of filled elastomers utilizing a modified boundary surface model[J]. International Journal of Solids and Structures, 2014, 51(19/20):3431-3438.
    [11] Wollscheid D, Lion A. The benefit of fractional derivatives in modelling the dynamics of filler-reinforced rubber under large strains:a comparison with the Maxwell-element approach[J]. Computational Mechanics, 2014, 53(5):1015-1031.
    [12] Wollscheid D, Lion A. Predeformation-and frequencydependent material behaviour of filler-reinforced rubber:Experiments, constitutive modelling and parameter identification[J]. International Journal of Solids and Structures, 2013, 50(9):1217-1225.
    [13] Pritz T. Five-parameter fractional derivative model for polymeric damping materials[J]. Journal of Sound and Vibration, 2003, 265(5):935-952.
    [14] Shi H, Wu P. A nonlinear rubber spring model containing fractional derivatives for use in railroad vehicle dynamic analysis[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2016, 230(7):1745-1759.
    [15] Wang B, Kari L. A nonlinear constitutive model by spring, fractional derivative and modified bounding surface model to represent the amplitude, frequency and the magnetic dependency for Magneto-sensitive rubber[J]. Journal of Sound and Vibration, 2019, 438:344-352.
    [16] 吴杰, 上官文斌. 采用粘弹性分数导数模型的橡胶隔振器动态特性的建模及应用[J]. 工程力学, 2008, 25(1):162-166. Wu Jie, Shangguan Wenbin. Modeling and applications of dynamic characteristics for rubber isolators using viscoelastic fractional derivative model[J]. Engineering Mechanics, 2008, 25(1):162-166. (in Chinese)
    [17] 胡小玲, 刘秀, 李明, 等. 炭黑填充橡胶超弹性本构模的选取策略[J]. 工程力学, 2014, 31(5):34-42. Hu Xiaoling, Liu Xiu, Li Ming, et al. Selectionstrategies of hyperelastic constitutive models for carbon black filled rubber[J]. Engineering Mechanics, 2014, 31(5):34-42. (in Chinese)
    [18] Devendra M O, Abhijit L. CAE simulation approach to predict behavior of hyper-elastic (rubber) material[J]. SAE Technical Paper, 2016, 9(1):336-345.
  • 期刊类型引用(15)

    1. 秦武,李春归,潘兵兵,李骏,胡建泰,葛平政,刘霏霏. 基于DBO-ELM模型的隔振橡胶疲劳寿命预测. 机电工程技术. 2024(02): 13-19 . 百度学术
    2. 袁川,沈东明,陆伟强,翁爽,黄海波. 橡胶悬置结构参数对高频动刚度影响分析. 机械制造. 2024(03): 4-8+18 . 百度学术
    3. 王敏,郭骧,黄军,童俊. 船用橡胶隔振器参数反演及预测模型应用. 合成橡胶工业. 2024(03): 203-209 . 百度学术
    4. 俞力洋,吴少培,李国芳,丁旺才. 非线性Zener模型周期解的稳定性与鞍结分岔集. 华中科技大学学报(自然科学版). 2023(04): 75-81 . 百度学术
    5. 郭骧,王敏,赵黎明. 基于橡胶隔振器动静态试验的弹性材料参数反演及预测模型研究. 材料开发与应用. 2023(01): 73-80 . 百度学术
    6. 陈俊杰,陈昌垚,王宏宇,康盛,高向东,方敬丰. 橡胶热氧老化条件下不同预载的压缩机隔振脚垫动态特性研究. 工程力学. 2023(06): 226-235 . 本站查看
    7. 曹茹,缪亚东. 添加橡胶块对橡胶衬套动刚度的影响研究. 车辆与动力技术. 2023(02): 20-23+28 . 百度学术
    8. 韩愈琪,刘雪莱,上官文斌. 基于本构神经网络橡胶隔振器动态特性建模. 噪声与振动控制. 2023(03): 265-270 . 百度学术
    9. 俞力洋,李国芳,吴少培,黄然,丁旺才. 非线性Zener隔振系统的动态响应及迟滞特性分析. 兰州交通大学学报. 2022(01): 90-97 . 百度学术
    10. 姜殿恒,陈飙松,张盛,李云鹏. 基于SiPESC平台的声子晶体能带结构分析算法研究及软件实现. 工程力学. 2022(12): 1-12 . 本站查看
    11. 朱雷威,金著,郭建强,王彦哲,帅长庚. 一种小变形宽载荷适应性低频隔振器研究. 海军工程大学学报. 2022(06): 79-83 . 百度学术
    12. 商霖,张海瑞,赵晓宁. 惯组小系统动力学建模与非线性特性分析. 中国惯性技术学报. 2021(01): 126-132 . 百度学术
    13. 余慕春,赵鹏,牛智玲,李炳蔚,南宫自军. 胶质阻尼隔振器的力学模型及隔振性能研究. 工程力学. 2020(12): 220-227 . 本站查看
    31. 李兴泉,庞剑,杨亮,贾小利,吴健翔,殷智宏,上官文斌. 不同预载下橡胶悬置高频动态特性的计算方法. 振动.测试与诊断. 2024(06): 1214-1219+1252 . 百度学术
    33. 范让林,徐春野,吴列,牛浩龙,赵骞. 电动汽车橡胶悬置高频动特性试验. 振动.测试与诊断. 2023(01): 126-131+202 . 百度学术

    其他类型引用(26)

计量
  • 文章访问数:  578
  • HTML全文浏览量:  89
  • PDF下载量:  93
  • 被引次数: 41
出版历程
  • 收稿日期:  2019-02-20
  • 修回日期:  2019-09-26
  • 刊出日期:  2020-01-24

目录

    /

    返回文章
    返回