[1] |
何小静, 上官文斌. 橡胶隔振器静态力-位移关系计算方法的研究[J]. 振动与冲击, 2012, 31(11):91-97. He Xiaojing, Shangguan Wenbin. Calculating methods for force versus displacement relation of a rubber isolator[J]. Journal of Vibration and Shock, 2012, 31(11):91-97. (in Chinese)
|
[2] |
Kaya N, Erkek M Y, Caner G ü ven. Hyperelastic modelling and shape optimisation of vehicle rubber bushings[J]. International Journal of Vehicle Design, 2016, 71(1/2/3/4):212-225.
|
[3] |
魏志刚, 陈效华, 吴沈荣, 等. 汽车控制臂衬套在整车工况下的有限元仿真[J]. 工程力学, 2016, 33(5):234-240. Wei Zhigang, Chen Xiaohua, Wu Shenrong, et al. Finite element simulation of rubber bushing of automobile control arm in under full vehicle loading condition[J]. Engineering Mechanics, 2016, 33(5):234-240. (in Chinese)
|
[4] |
Shoyama T, Fujimoto K. Direct measurement of high-frequency viscoelastic properties of pre-deformed rubber[J]. Polymer Testing, 2018, 67:399-408.
|
[5] |
Lee Y H, Kim J S, Kim K J, et al. Prediction of dynamic stiffness on rubber components considering preloads[J]. Materialwissenschaft und Werkstofftechnik, 2013, 44(5):372-379.
|
[6] |
Park S W. Analytical modeling of viscoelastic dampers for structural and vibration control[J]. International Journal of Solids and Structures, 2001, 38(44/45):8065-8092.
|
[7] |
Lee H S, Shin J K, Msolli S, et al. Prediction of the dynamic equivalent stiffness for a rubber bushing using the finite element method and empirical modeling[J]. International Journal of Mechanics and Materials in Design, 2017, 15(1):77-91.
|
[8] |
Khajehsaeid H, Baghani M, Naghdabadi R. Finite strain numerical analysis of elastomeric bushings under multi-axial loadings:A compressible visco-hyperelastic approach[J]. International Journal of Mechanics & Materials in Design, 2013, 9(4):385-399.
|
[9] |
李占龙, 孙大刚, 燕碧娟, 等. 考虑形状参数的分数黏弹性振子频响特性[J]. 工程力学, 2017, 34(2):232-240. Li Zhanlong, Sun Dagang, Yan Bijuan, et al. Frequency response of fractional viscoelastic oscillator considering geometric factor[J]. Engineering Mechanics, 2017, 34(2):232-240. (in Chinese)
|
[10] |
Rickard Ö, Wentzel H, Kari L, et al. Constitutive modelling of the amplitude and frequency dependency of filled elastomers utilizing a modified boundary surface model[J]. International Journal of Solids and Structures, 2014, 51(19/20):3431-3438.
|
[11] |
Wollscheid D, Lion A. The benefit of fractional derivatives in modelling the dynamics of filler-reinforced rubber under large strains:a comparison with the Maxwell-element approach[J]. Computational Mechanics, 2014, 53(5):1015-1031.
|
[12] |
Wollscheid D, Lion A. Predeformation-and frequencydependent material behaviour of filler-reinforced rubber:Experiments, constitutive modelling and parameter identification[J]. International Journal of Solids and Structures, 2013, 50(9):1217-1225.
|
[13] |
Pritz T. Five-parameter fractional derivative model for polymeric damping materials[J]. Journal of Sound and Vibration, 2003, 265(5):935-952.
|
[14] |
Shi H, Wu P. A nonlinear rubber spring model containing fractional derivatives for use in railroad vehicle dynamic analysis[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2016, 230(7):1745-1759.
|
[15] |
Wang B, Kari L. A nonlinear constitutive model by spring, fractional derivative and modified bounding surface model to represent the amplitude, frequency and the magnetic dependency for Magneto-sensitive rubber[J]. Journal of Sound and Vibration, 2019, 438:344-352.
|
[16] |
吴杰, 上官文斌. 采用粘弹性分数导数模型的橡胶隔振器动态特性的建模及应用[J]. 工程力学, 2008, 25(1):162-166. Wu Jie, Shangguan Wenbin. Modeling and applications of dynamic characteristics for rubber isolators using viscoelastic fractional derivative model[J]. Engineering Mechanics, 2008, 25(1):162-166. (in Chinese)
|
[17] |
胡小玲, 刘秀, 李明, 等. 炭黑填充橡胶超弹性本构模的选取策略[J]. 工程力学, 2014, 31(5):34-42. Hu Xiaoling, Liu Xiu, Li Ming, et al. Selectionstrategies of hyperelastic constitutive models for carbon black filled rubber[J]. Engineering Mechanics, 2014, 31(5):34-42. (in Chinese)
|
[18] |
Devendra M O, Abhijit L. CAE simulation approach to predict behavior of hyper-elastic (rubber) material[J]. SAE Technical Paper, 2016, 9(1):336-345.
|