物理模拟龙卷风的风速和气压降分布特征

田玉基, 钮亚楠, 杨庆山, 李波

田玉基, 钮亚楠, 杨庆山, 李波. 物理模拟龙卷风的风速和气压降分布特征[J]. 工程力学, 2020, 37(3): 66-76. DOI: 10.6052/j.issn.1000-4750.2019.04.0163
引用本文: 田玉基, 钮亚楠, 杨庆山, 李波. 物理模拟龙卷风的风速和气压降分布特征[J]. 工程力学, 2020, 37(3): 66-76. DOI: 10.6052/j.issn.1000-4750.2019.04.0163
TIAN Yu-ji, NIU Ya-nan, YANG Qing-shan, LI Bo. CHARACTERISTICS OF THE SPEEDS AND PRESSURE DROPS OF PHYSICALLY SIMULATED TORNADOES[J]. Engineering Mechanics, 2020, 37(3): 66-76. DOI: 10.6052/j.issn.1000-4750.2019.04.0163
Citation: TIAN Yu-ji, NIU Ya-nan, YANG Qing-shan, LI Bo. CHARACTERISTICS OF THE SPEEDS AND PRESSURE DROPS OF PHYSICALLY SIMULATED TORNADOES[J]. Engineering Mechanics, 2020, 37(3): 66-76. DOI: 10.6052/j.issn.1000-4750.2019.04.0163

物理模拟龙卷风的风速和气压降分布特征

基金项目: 国家自然科学基金项目(51720105005,50878040)
详细信息
    作者简介:

    钮亚楠(1992-),女,北京人,硕士生,从事结构工程设计(E-mail:553187462@qq.com);杨庆山(1968-),男,河北人,教授,博士,从事结构风工程研究(E-mail:qshyang@cqu.edu.cn);李波(1974-),男,湖北人,教授,博士,从事结构风工程研究(E-mail:libo77_@163.com).

    通讯作者:

    田玉基(1967-),男,山东人,教授,博士,博导,从事结构风工程研究(E-mail:yujitian@bjtu.edu.cn).

  • 中图分类号: TU312.1

CHARACTERISTICS OF THE SPEEDS AND PRESSURE DROPS OF PHYSICALLY SIMULATED TORNADOES

  • 摘要: 与季风、台风相比,龙卷风具有空间尺度最小、风速最大的特点,常规气象观测仪器无法记录龙卷风的风场信息;到目前为止,极少量的龙卷风风场信息来自于多普勒雷达探测得到的龙卷风风速、气压特征信息。因此,基于龙卷风实测数据尚不能充分研究龙卷风的风场特征。在实验室中,利用缩尺的物理模拟器生成龙卷风风场,研究其风场特点,对于充分认识龙卷风特性具有重要意义。利用北京交通大学龙卷风模拟器生成了5种涡流比的龙卷风风场,总结分析了龙卷风的切向风速、径向风速、竖向风速以及气压降的空间分布规律,与龙卷风实测结果和龙卷风理论模型进行了对比分析。结果表明,利用北京交通大学龙卷风模拟器生成的龙卷风风场与真实龙卷风的形状相似,风速、气压降的分布特点与真实龙卷风实测值和修正兰金涡理论值吻合或基本吻合,验证了龙卷风模拟器的有效性,为进一步研究建筑、桥梁、输电线等基础设施的龙卷风风效应提供了试验平台。
    Abstract: Compared with monsoons and typhoons, the tornadoes with the smallest scales and the highest speeds are difficult to measure by meteorological observation instruments. Until now, little wind field information of tornado speeds and pressure drops was obtained by using Doppler radars. The field-measured tornado data are not enough to investigate the wind characteristics. To comprehensively recognize tornados, it is significant to study the wind fields of tornadoes generated by scaled-down physical simulators in the laboratory. Different wind fields of tornadoes with five swirl ratios are produced by the tornado simulator in Beijing Jiaotong University. The spatial distribution characteristics of the tornadoes including the tangential, radial, vertical wind speeds and pressure drops are summarized and analyzed. The simulation results are compared with those recorded in full-scale measurements and determined by theoretical models. The results indicate that the shapes of the simulated tornadoes are similar to those of the actual cases. Furthermore, the distributions of wind speeds and pressure drops generally agree with the actual observed data and theoretical results based on the modified Rankine vortex model. The comparisons prove the validity of the current tornado simulator, which provides a good experimental platform to examine the tornado-induced effects on buildings, bridges, power transmission lines and other infrastructures.
  • [1] Chen J Y, Cai X H, Wang H Y, et al. Tornado climatology of China[J]. International Journal of Climatology, 2018, 38(5):2478-2489.
    [2] Yang Q S, Gao R, Bai F, et al. Damage to buildings and structures due to recent devastating wind hazards in East Asia[J]. Natural Hazards, 2018, 92(3):1321-1353.
    [3] Chang C C. Tornado wind effects on buildings and structures with laboratory simulation[C]//Proceeding of the Third International Conference on Wind Effects on Buildings and Structures, Tokyo, Japan, 1971:231-240.
    [4] Ward N B. The exploration of certain features of tornado dynamics using a laboratory model[J]. Journal of the Atmospheric Sciences, 1972, 29(6):1194-1204.
    [5] Mitsuta Y, Monji N. Development of a laboratory simulator for small scale atmospheric vortices[J]. Journal of Natural Disaster Science, 1984, 6(1):43-53.
    [6] Mishar A R, James D J, Letchford C W. Physical simulation of a single-celled tornado-like vortex, Part A:Flow field characterization[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(8):1243-1257.
    [7] Tang Z, Feng C, Wu L, et al. Characteristics of tornado-like vortices simulated in a large-scale ward-type simulator[J]. Boundary-layer Meteorology, 2018, 166(2):327-350.
    [8] Haan F L, Sarkar P P, Gallus W A. Design, construction and performance of a large tornado simulator for wind engineering applications[J]. Engineering Structures, 2008, 30(4):1146-1159.
    [9] Wang J, Cao S, Pang W, et al. Experimental study on effects of ground roughness on flow characteristics of tornado-like vortices[J]. Boundary-layer Meteorology, 2017, 162(2):319-339.
    [10] Cao S Y, Wang J, Cao J, et al. Experimental study of wind pressures acting on a cooling tower exposed to stationary tornado-like vortices[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 145(10):75-86.
    [11] Wang J, Cao S, Pang W, et al. Experimental study on tornado-induced wind pressures on a cubic building with openings[J]. Journal of Structural Engineering, 2017, 44(2):04017206.
    [12] Church C R, Snow J T, Baker G L, et al. Characteristics of tornado-like vortices as a function of swirl ratio:A laboratory investigation[J]. Journal of the Atmospheric Sciences, 1979, 36(9):1755-1776.
    [13] Maryam R. Physical simulation of tornado-like vortices[D]. Canada:The University of Western Ontario, 2014.
    [14] Lee W C, Wurman J. Diagnosed three-dimensional axisymmetric of the Mulhall tornado on 3 May 1999[J]. Journal of the Atmospheric Sciences, 2005, 62(7):2373-2393.
    [15] Kuai L, Haan J F L, Gallus J W, et al. CFD simulation of the flow field of a laboratory-simulated tornado for parameter sensitivity studies and comparison with field measurement[J]. Wind and Structures, 2008, 11(2):75-96.
    [16] USNRC (US Nuclear Regulatory Commission). Design-basis tornado and tornado missiles for nuclear power plants[R]. US Nuclear Regulatory Commission, Washington, DC, Regulatory Guide 1.76, 2007:4-6.
    [17] Lee J J, Samaras T, Young C R. Pressure measurements at the ground in an F4 tornado[C]//The 22nd Conference on Severe Local Storms, Hyannis, MA, American Meteorological Society, CD-ROM. 2004, 15.
计量
  • 文章访问数:  580
  • HTML全文浏览量:  47
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-02
  • 修回日期:  2019-10-08
  • 刊出日期:  2020-05-26

目录

    /

    返回文章
    返回