[1] |
Frew D J, Hanchak S J, Green M L, et al. Penetration of concrete targets with ogive-nose steel rods[J]. International Journal of Impact Engineering, 1998, 21(6):489-497.
|
[2] |
Xu X Z, Ma T B, Ning J G. Failure mechanism of reinforced concrete subjected to projectile impact loading.[J] Engineering Failure Analysis, 2019, 96:468-483.
|
[3] |
Forrestal M J, Frew D J, Hanchak S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles[J]. International Journal of Impact Engineering, 1996, 18(5):465-476.
|
[4] |
Forrestal M J, Altman B S, Cargile J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets[J]. International Journal of Impact Engineering, 1994, 15(4):395-405.
|
[5] |
Xu X Z, Ma T B, Wang Z H. A theoretical model of rigid projectile perforation of concrete slabs using the energy method[J]. Science China Technological Sciences, 2018, 61(5):699-710.
|
[6] |
Xu X Z, Ma T B, Ning J G. The damage and failure mechanism of the concrete subjected to shaped charge loading[J]. Engineering Failure Analysis, 2017, 82:741-752.
|
[7] |
宁建国, 周风华, 王志华, 等. 强冲击载荷下钢筋混凝土的本构关系、破坏机理与数值方法[J]. 中国科学:技术科学, 2016, 46:323-331. Ning Jianguo, Zhou Fenghua, Wang Zhihua, et al. Constitutive model, failure mechanism and numerical method for reinforced concrete under intensive impact loading[J]. Science China Technological Sciences, 2016, 46:323-331. (in Chinese)
|
[8] |
Davis R N, Neely A M, Jones S E. Mass loss and blunting during high-speed penetration[J]. Proceeding of the Institution of Mechanical Engineers:Part C, 2004, 218(9):1053-1062.
|
[9] |
Jones S E, Foster J C, Toness O A, et al. An estimate for mass loss from high velocity steel penetrators[C]. Proceedings of the ASME pvp-435 Conference on Thermal-Hydraulic Problems, Sloshing Phenomena, and Extreme Loads on Structures, New York:Moody F J, 2002.
|
[10] |
Klepaczko J R, Hughes M L. Scaling of wear in kinetic energy penetrators[J]. International Journal of Impact Engineering, 2005, 31(4):435-459.
|
[11] |
Silling S A, Forrestal M J. Mass loss from abrasion on ogive-nose steel projectiles that penetrate concrete targets[J]. International Journal of Impact Engineering, 2007, 34(11):1814-1820.
|
[12] |
马天宝, 王志华. 高速侵彻弹体熔化质量侵蚀的数值模拟研究[J]. 中国科学:技术科学, 2016, 46:387-392. Ma Tianbao, Wang Zhihua. Numerical study on mass loss of high velocity penetration projectiles due to melting[J]. Science China Technological Sciences, 2016, 46:387-392. (in Chinese)
|
[13] |
何翔, 徐翔云, 孙桂娟, 等. 弹体高速侵彻混凝土的效应实验[J]. 爆炸与冲击, 2010, 30(1):1-6. He Xiang, Xu Xiangyun, Sun Guijuan, et al. Experimental investigation on projectiles' high-velocity penetration into concrete targets[J]. Explosion and Shock Waves, 2010, 30(1):1-6. (in Chinese)
|
[14] |
杨建超, 左新建, 何翔, 等. 弹体高速侵彻混凝土质量侵蚀实验研究[J]. 实验力学, 2012, 27(1):122-127. Yang Jianchao, Zuo Xinjian, He Xiang, et al. Experimental study of projectile mass loss in high velocity penetration of concrete target[J]. Journal of Experimental Mechanics, 2012, 27(1):122-127. (in Chinese)
|
[15] |
Wu C, Li W B, Shen X J. Study of the anti-penetration performance of concrete with different coarse aggregate content[J]. Latin American Journal of Solids and Structures, 2018, 15(6):e99.
|
[16] |
Mu Z C, Zhang W. An investigation on mass loss of ogival projectiles penetrating concrete targets[J]. International Journal of Impact Engineering, 2011, 38(8/9):770-778.
|
[17] |
Kumbhar K, Senthil P P, Gogia A K. Microstructural observations on the terminal penetration of long rod projectile[J]. Defence Technology, 2017(13):413-421.
|
[18] |
Guo L, He Y, Zhang X F, et al. Study mass loss at microscopic scale for a projectile penetration into concrete[J]. International Journal of Impact Engineering, 2014, 72(4):17-25.
|
[19] |
武海军, 黄风雷, 王一楠, 等. 高速侵彻混凝土弹体头部侵蚀终点效应实验研究[J]. 兵工学报, 2012, 33(1):48-55. Wu Haijun, Huang Fenglei, Wang Yinan, et al. Experimental investigation on projectile nose eroding effect of high-velocity penetration into concrete[J]. Acta Armamentarii, 2012, 33(1):48-55. (in Chinese)
|
[20] |
陈镇鹏, 宋言, 张雄, 等. 耦合有限元物质点法及其在流固耦合问题中的应用[J]. 工程力学, 2017, 34(12):14-21. Chen Zhenpeng, Song Yan, Zhang Xiong, et al. Coupled finite element material point method and its application in fluid-structure interaction[J]. Engineering Mechanics, 2017, 34(12):14-21. (in Chinses)
|
[21] |
Yang H W, Jin X C, Zhang J, et al. Analysis on mass loss of different sized projectiles penetrating into concrete targets[J]. International Journal of Mechanical Sciences, 2017, 131:683-692.
|
[22] |
Klepaczko J R. Surface layer thermodynamics of steel penetrators at high and very high sliding velocities[R]. Florida, 2001.
|
[23] |
He L L, Chen X W, Xia Y M. Representation of nose blunting of projectile into concrete target and two reduction suggestions[J]. International Journal of Impact Engineering, 2014, 74:132-144.
|
[24] |
Ouyang H, Chen X W. Modeling on mass loss and nose blunting of high-speed penetrator into concrete target[J]. International Journal of Protective Structures, 2018, 10:3-25.
|
[25] |
刘志林, 王晓鸣, 李文彬, 等. 考虑侵蚀效应的卵形弹丸侵彻混凝土介质模型研究[J]. 弹道学报, 2017, 29(2):19-25. Liu Zhilin, Wang Xiaoming, Li Wenbin, et al. Model of ogive nose projectile penetrating concrete target considering effect of mass loss and nose blunting[J]. Journal of Ballistics, 2017, 29(2):19-25. (in Chinese)
|
[26] |
郭磊, 何勇, 张年松, 等. 基于Archard理论分析弹体质量侵蚀[J]. 爆炸与冲击, 2014, 34(5):622-629. Guo Lei, He Yang, Zhang Niansong, et al. On the mass loss of a projectile based on Archard theory[J]. Explosion and Shock Waves, 2014, 34(5):622-629. (in Chinese)
|
[27] |
Feng J, Li W, Wang X, et al. Dynamic spherical cavity expansion analysis of rate-dependent concrete material with scale effect[J]. International Journal of Impact Engineering, 2015, 84(10):24-37.
|
[28] |
李志康, 黄风雷. 混凝土材料的动态空腔膨胀理论[J]. 爆炸与冲击, 2009, 29(1):95-100. Li Zhikang, Huang Fenglei. A dynamic spherical cavity-expansion theory for concrete materials[J]. Explosion and Shock Waves, 2009, 29(1):95-100. (in Chinese)
|
[29] |
马天宝, 岳恒超, 任会兰, 等. 陶瓷/金属复合靶抗侵彻性能的数值模拟方法研究[J]. 工程力学, 2015, 32(4):228-233. Ma Tianbao, Yue Hengchao, Ren Huilan, et al. Numerical analysis of the anti-penetration properties of ceramic/metal targets[J]. Engineering Mechanics, 2015, 32(4):228-233. (in Chinses)
|
[30] |
彭永, 方秦, 吴昊, 等. 对弹体侵彻混凝土靶体阻力函数计算公式的探讨[J]. 工程力学, 2015, 32(4):112-119. Peng Yong, Fang Qin, Wu Hao, et al. Discussion on the resistance forcing function of projectiles penetrating into concrete targets[J]. Engineering Mechanics, 2015, 32(4):112-119. (in Chinses)
|
[31] |
Forrestal M J, Luk V K. Penetration into soil targets[J]. International Journal of Impact Engineering, 1992, 12(3):427-444.
|
[32] |
Drucker D C, Gibson R, Henkel D. Soil mechanics and work-hardening theories of plasticity[J]. Transactions ASCE, 1957, 122:338-346.
|
[33] |
Drucker D C, Prager W. Soil mechanics and plastic analysis or limit design[J]. Quarterly of Applied Mathematics, 1952, 10(2):157-165.
|
[34] |
Holmquist T J, Johnson G R, Cook W H. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures[C]//The International Symposium on Ballistics, Quebec Canada, 1993:591-600.
|
[35] |
孙其然, 李芮宇, 赵亚运, 等. HJC模型模拟钢筋混凝土侵彻实验的参数研究[J]. 工程力学, 2016, 33(8):248-256. Sun Qiran, Li Ruiyu, Zhao Yayun, et al. Investigation on parameters of HJC model applied to simulate perforation experiments of reinforced concrete[J]. Engineering Mechanics, 2016, 33(8):248-256. (in Chinses)
|
[36] |
张青艳, 靳晓庆, 郑宇轩, 等. 聚脲包覆混凝土的压缩和吸能特性研究[J]. 工程力学, 2016, 33(4):205-209. Zhang Qingyan, Jin Xiaoqing, Zheng Yuxuan, et al. Compressive and energy absorption properties of polyurea-coated concrete under quasistatic or dynamic loadings[J]. Engineering Mechanics, 2016, 33(4):205-209.
|
[37] |
Rabinowicz E, Dunn L A, Russell P G. A study of abrasive wear under three-body conditions[J]. Wear, 1961, 4(5):345-355.
|
[38] |
Qian F, Wu H J, Huang F L, et al. Projectile mass loss model using the coefficient of friction for high-speed penetration into concrete[J]. Applied Mechanics and Materials, 2014, 566:365-370.
|
[39] |
Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics. Netherlands:The Hague, 1983:541-547.
|
[40] |
He L L, Chen X W. Analyses of the penetration process considering mass loss[J]. European Journal of Mechanics A-solids, 2011, 30(2):145-157.
|
[41] |
Guo L, He Y, Zhang X F, et al. Thermal-mechanical analysis on the mass loss of high-speed projectiles penetrating concrete targets[J]. European Journal of Mechanic A/Solids, 2017, 65:159-177.
|