卵形弹侵彻混凝土靶的耦合侵蚀模型

李钊, 宁建国, 马天宝, 许香照

李钊, 宁建国, 马天宝, 许香照. 卵形弹侵彻混凝土靶的耦合侵蚀模型[J]. 工程力学, 2020, 37(4): 236-247. DOI: 10.6052/j.issn.1000-4750.2019.06.0294
引用本文: 李钊, 宁建国, 马天宝, 许香照. 卵形弹侵彻混凝土靶的耦合侵蚀模型[J]. 工程力学, 2020, 37(4): 236-247. DOI: 10.6052/j.issn.1000-4750.2019.06.0294
LI Zhao, NING Jian-guo, MA Tian-bao, XU Xiang-zhao. THE COUPLED MELTING-CUTTING ABRASION MODEL OF OGIVE-NOSE PROJECTILE PENETRATION INTO CONCRETE TARGETS[J]. Engineering Mechanics, 2020, 37(4): 236-247. DOI: 10.6052/j.issn.1000-4750.2019.06.0294
Citation: LI Zhao, NING Jian-guo, MA Tian-bao, XU Xiang-zhao. THE COUPLED MELTING-CUTTING ABRASION MODEL OF OGIVE-NOSE PROJECTILE PENETRATION INTO CONCRETE TARGETS[J]. Engineering Mechanics, 2020, 37(4): 236-247. DOI: 10.6052/j.issn.1000-4750.2019.06.0294

卵形弹侵彻混凝土靶的耦合侵蚀模型

基金项目: 国家自然科学基金项目(11822203);中国博士后科学基金项目(2018M641209)
详细信息
    作者简介:

    李钊(1992-),男,河北人,博士生,主要从事冲击动力学研究(E-mail:3120160075@bit.edu.cn);宁建国(1963-),男,山西人,教授,博士,博导,主要从事爆炸力学,材料动力学研究(E-mail:jgning@bit.edu.cn);马天宝(1981-),男,黑龙江人,副教授,博士,主要从事计算爆炸力学研究(E-mail:madabal@bit.edu.cn).

    通讯作者:

    许香照(1989-),男,江西人,博士,主要从事计算爆炸力学研究(E-mail:7520180029@bit.edu.cn).

  • 中图分类号: O385

THE COUPLED MELTING-CUTTING ABRASION MODEL OF OGIVE-NOSE PROJECTILE PENETRATION INTO CONCRETE TARGETS

  • 摘要: 弹体在高速侵彻混凝土介质过程中会出现明显的侵蚀现象,导致弹体发生质量损失和弹头钝化。据已有的实验观察,弹体表面熔化和骨料切削是侵蚀发生的主要机制。该文基于动态空腔膨胀理论并结合弹体表面熔化和骨料切削这两种机制,提出一种耦合两种机制的耦合质量侵蚀模型。该模型通过二维热传导和改进的Rabinowizc磨损理论分别获取弹体表面熔化和骨料对弹体切削而造成的弹体质量损失,通过Johnson-Cook本构将温度和切削两种机制联系起来,进而建立了结合熔化机制和切削机制的耦合质量侵蚀模型。将耦合模型预测的弹体侵彻深度和质量损失率等参数并与实验结果进行对比,对比结果表明模型的理论预测与实验数据有较好的吻合度,验证了该文耦合模型结合熔化和切削机制的合理性。最后,讨论了侵彻过程中弹体的相关运动参数演变过程,为弹体侵彻中侵蚀现象问题的研究提供一定参考。
    Abstract: The mass abrasion of projectiles is an obvious phenomenon during the penetration into concrete targets, which will result in the mass loss and bunting nose. According to the experimental observation, the thermal melting and cutting by the aggregate on the surface of a projectile are the main mechanisms for the mass abrasion. In this paper, a coupled melting-cutting abrasion model is proposed combing with these two main abrasion mechanisms and the dynamic cavity expansion theory (CET). The mass loss of the projectile is obtained by the coupled abrasion model because of melting and cutting using the two-dimensional thermal conduct equation and modified Rabinowizc theory, respectively. The relationship between the two abrasion mechanisms is established based on the Johnson-Cook model. Then, the penetration performance parameters, such as the penetration depth, variation of projectile shape and mass loss rate, are obtained by the coupled abrasion model. The calculated results were compared with the experimental data. The comparison results show that the theoretical model prediction is in good agreement with the experimental data, which verifies the validity of the proposed coupled melting-cutting abrasion model. Finally, the evolution of the kinetic parameters and nose shape variation during the penetration are discussed. This work can provide some reference for the research of mass abrasion phenomena in the penetration process.
  • [1] Frew D J, Hanchak S J, Green M L, et al. Penetration of concrete targets with ogive-nose steel rods[J]. International Journal of Impact Engineering, 1998, 21(6):489-497.
    [2] Xu X Z, Ma T B, Ning J G. Failure mechanism of reinforced concrete subjected to projectile impact loading.[J] Engineering Failure Analysis, 2019, 96:468-483.
    [3] Forrestal M J, Frew D J, Hanchak S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles[J]. International Journal of Impact Engineering, 1996, 18(5):465-476.
    [4] Forrestal M J, Altman B S, Cargile J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets[J]. International Journal of Impact Engineering, 1994, 15(4):395-405.
    [5] Xu X Z, Ma T B, Wang Z H. A theoretical model of rigid projectile perforation of concrete slabs using the energy method[J]. Science China Technological Sciences, 2018, 61(5):699-710.
    [6] Xu X Z, Ma T B, Ning J G. The damage and failure mechanism of the concrete subjected to shaped charge loading[J]. Engineering Failure Analysis, 2017, 82:741-752.
    [7] 宁建国, 周风华, 王志华, 等. 强冲击载荷下钢筋混凝土的本构关系、破坏机理与数值方法[J]. 中国科学:技术科学, 2016, 46:323-331. Ning Jianguo, Zhou Fenghua, Wang Zhihua, et al. Constitutive model, failure mechanism and numerical method for reinforced concrete under intensive impact loading[J]. Science China Technological Sciences, 2016, 46:323-331. (in Chinese)
    [8] Davis R N, Neely A M, Jones S E. Mass loss and blunting during high-speed penetration[J]. Proceeding of the Institution of Mechanical Engineers:Part C, 2004, 218(9):1053-1062.
    [9] Jones S E, Foster J C, Toness O A, et al. An estimate for mass loss from high velocity steel penetrators[C]. Proceedings of the ASME pvp-435 Conference on Thermal-Hydraulic Problems, Sloshing Phenomena, and Extreme Loads on Structures, New York:Moody F J, 2002.
    [10] Klepaczko J R, Hughes M L. Scaling of wear in kinetic energy penetrators[J]. International Journal of Impact Engineering, 2005, 31(4):435-459.
    [11] Silling S A, Forrestal M J. Mass loss from abrasion on ogive-nose steel projectiles that penetrate concrete targets[J]. International Journal of Impact Engineering, 2007, 34(11):1814-1820.
    [12] 马天宝, 王志华. 高速侵彻弹体熔化质量侵蚀的数值模拟研究[J]. 中国科学:技术科学, 2016, 46:387-392. Ma Tianbao, Wang Zhihua. Numerical study on mass loss of high velocity penetration projectiles due to melting[J]. Science China Technological Sciences, 2016, 46:387-392. (in Chinese)
    [13] 何翔, 徐翔云, 孙桂娟, 等. 弹体高速侵彻混凝土的效应实验[J]. 爆炸与冲击, 2010, 30(1):1-6. He Xiang, Xu Xiangyun, Sun Guijuan, et al. Experimental investigation on projectiles' high-velocity penetration into concrete targets[J]. Explosion and Shock Waves, 2010, 30(1):1-6. (in Chinese)
    [14] 杨建超, 左新建, 何翔, 等. 弹体高速侵彻混凝土质量侵蚀实验研究[J]. 实验力学, 2012, 27(1):122-127. Yang Jianchao, Zuo Xinjian, He Xiang, et al. Experimental study of projectile mass loss in high velocity penetration of concrete target[J]. Journal of Experimental Mechanics, 2012, 27(1):122-127. (in Chinese)
    [15] Wu C, Li W B, Shen X J. Study of the anti-penetration performance of concrete with different coarse aggregate content[J]. Latin American Journal of Solids and Structures, 2018, 15(6):e99.
    [16] Mu Z C, Zhang W. An investigation on mass loss of ogival projectiles penetrating concrete targets[J]. International Journal of Impact Engineering, 2011, 38(8/9):770-778.
    [17] Kumbhar K, Senthil P P, Gogia A K. Microstructural observations on the terminal penetration of long rod projectile[J]. Defence Technology, 2017(13):413-421.
    [18] Guo L, He Y, Zhang X F, et al. Study mass loss at microscopic scale for a projectile penetration into concrete[J]. International Journal of Impact Engineering, 2014, 72(4):17-25.
    [19] 武海军, 黄风雷, 王一楠, 等. 高速侵彻混凝土弹体头部侵蚀终点效应实验研究[J]. 兵工学报, 2012, 33(1):48-55. Wu Haijun, Huang Fenglei, Wang Yinan, et al. Experimental investigation on projectile nose eroding effect of high-velocity penetration into concrete[J]. Acta Armamentarii, 2012, 33(1):48-55. (in Chinese)
    [20] 陈镇鹏, 宋言, 张雄, 等. 耦合有限元物质点法及其在流固耦合问题中的应用[J]. 工程力学, 2017, 34(12):14-21. Chen Zhenpeng, Song Yan, Zhang Xiong, et al. Coupled finite element material point method and its application in fluid-structure interaction[J]. Engineering Mechanics, 2017, 34(12):14-21. (in Chinses)
    [21] Yang H W, Jin X C, Zhang J, et al. Analysis on mass loss of different sized projectiles penetrating into concrete targets[J]. International Journal of Mechanical Sciences, 2017, 131:683-692.
    [22] Klepaczko J R. Surface layer thermodynamics of steel penetrators at high and very high sliding velocities[R]. Florida, 2001.
    [23] He L L, Chen X W, Xia Y M. Representation of nose blunting of projectile into concrete target and two reduction suggestions[J]. International Journal of Impact Engineering, 2014, 74:132-144.
    [24] Ouyang H, Chen X W. Modeling on mass loss and nose blunting of high-speed penetrator into concrete target[J]. International Journal of Protective Structures, 2018, 10:3-25.
    [25] 刘志林, 王晓鸣, 李文彬, 等. 考虑侵蚀效应的卵形弹丸侵彻混凝土介质模型研究[J]. 弹道学报, 2017, 29(2):19-25. Liu Zhilin, Wang Xiaoming, Li Wenbin, et al. Model of ogive nose projectile penetrating concrete target considering effect of mass loss and nose blunting[J]. Journal of Ballistics, 2017, 29(2):19-25. (in Chinese)
    [26] 郭磊, 何勇, 张年松, 等. 基于Archard理论分析弹体质量侵蚀[J]. 爆炸与冲击, 2014, 34(5):622-629. Guo Lei, He Yang, Zhang Niansong, et al. On the mass loss of a projectile based on Archard theory[J]. Explosion and Shock Waves, 2014, 34(5):622-629. (in Chinese)
    [27] Feng J, Li W, Wang X, et al. Dynamic spherical cavity expansion analysis of rate-dependent concrete material with scale effect[J]. International Journal of Impact Engineering, 2015, 84(10):24-37.
    [28] 李志康, 黄风雷. 混凝土材料的动态空腔膨胀理论[J]. 爆炸与冲击, 2009, 29(1):95-100. Li Zhikang, Huang Fenglei. A dynamic spherical cavity-expansion theory for concrete materials[J]. Explosion and Shock Waves, 2009, 29(1):95-100. (in Chinese)
    [29] 马天宝, 岳恒超, 任会兰, 等. 陶瓷/金属复合靶抗侵彻性能的数值模拟方法研究[J]. 工程力学, 2015, 32(4):228-233. Ma Tianbao, Yue Hengchao, Ren Huilan, et al. Numerical analysis of the anti-penetration properties of ceramic/metal targets[J]. Engineering Mechanics, 2015, 32(4):228-233. (in Chinses)
    [30] 彭永, 方秦, 吴昊, 等. 对弹体侵彻混凝土靶体阻力函数计算公式的探讨[J]. 工程力学, 2015, 32(4):112-119. Peng Yong, Fang Qin, Wu Hao, et al. Discussion on the resistance forcing function of projectiles penetrating into concrete targets[J]. Engineering Mechanics, 2015, 32(4):112-119. (in Chinses)
    [31] Forrestal M J, Luk V K. Penetration into soil targets[J]. International Journal of Impact Engineering, 1992, 12(3):427-444.
    [32] Drucker D C, Gibson R, Henkel D. Soil mechanics and work-hardening theories of plasticity[J]. Transactions ASCE, 1957, 122:338-346.
    [33] Drucker D C, Prager W. Soil mechanics and plastic analysis or limit design[J]. Quarterly of Applied Mathematics, 1952, 10(2):157-165.
    [34] Holmquist T J, Johnson G R, Cook W H. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures[C]//The International Symposium on Ballistics, Quebec Canada, 1993:591-600.
    [35] 孙其然, 李芮宇, 赵亚运, 等. HJC模型模拟钢筋混凝土侵彻实验的参数研究[J]. 工程力学, 2016, 33(8):248-256. Sun Qiran, Li Ruiyu, Zhao Yayun, et al. Investigation on parameters of HJC model applied to simulate perforation experiments of reinforced concrete[J]. Engineering Mechanics, 2016, 33(8):248-256. (in Chinses)
    [36] 张青艳, 靳晓庆, 郑宇轩, 等. 聚脲包覆混凝土的压缩和吸能特性研究[J]. 工程力学, 2016, 33(4):205-209. Zhang Qingyan, Jin Xiaoqing, Zheng Yuxuan, et al. Compressive and energy absorption properties of polyurea-coated concrete under quasistatic or dynamic loadings[J]. Engineering Mechanics, 2016, 33(4):205-209.
    [37] Rabinowicz E, Dunn L A, Russell P G. A study of abrasive wear under three-body conditions[J]. Wear, 1961, 4(5):345-355.
    [38] Qian F, Wu H J, Huang F L, et al. Projectile mass loss model using the coefficient of friction for high-speed penetration into concrete[J]. Applied Mechanics and Materials, 2014, 566:365-370.
    [39] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics. Netherlands:The Hague, 1983:541-547.
    [40] He L L, Chen X W. Analyses of the penetration process considering mass loss[J]. European Journal of Mechanics A-solids, 2011, 30(2):145-157.
    [41] Guo L, He Y, Zhang X F, et al. Thermal-mechanical analysis on the mass loss of high-speed projectiles penetrating concrete targets[J]. European Journal of Mechanic A/Solids, 2017, 65:159-177.
  • 期刊类型引用(39)

    1. 蔡亮,祝金伟. 某独柱墩曲线梁桥病害分析与改造方案设计. 结构工程师. 2025(01): 170-178 . 百度学术
    2. 孙伟,李欢,熊宗奇,项顺,徐一超. 小半径曲线桥墩柱横向偏位及纠偏处治方案研究. 世界桥梁. 2025(02): 126-132 . 百度学术
    3. 李子兵,何博文,张睿. 某连续梁桥墩梁偏位长期监测数据分析. 山西建筑. 2024(19): 145-149+154 . 百度学术
    4. 李闯,余茂峰,刘学亮. 基于Abaqus分析的曲线梁桥纵向爬移机理研究. 浙江交通职业技术学院学报. 2024(03): 17-21 . 百度学术
    5. 杨觅. 曲线梁桥横向爬移案例分析. 交通科技与管理. 2024(22): 163-166 . 百度学术
    6. 李伟. 曲线变宽桥梁爬移成因分析及处治对策. 交通与港航. 2024(06): 90-94 . 百度学术
    7. 谢阳福,叶远盛,桂水荣,杨宇. 曲率半径对中小跨径连续刚构桥施工阶段力学性能的影响. 中外公路. 2023(01): 99-103 . 百度学术
    8. 张枢文. 某匝道桥横向相反滑移现象原因剖析与修复. 上海公路. 2023(01): 95-98+182 . 百度学术
    9. 王强,高靓雯,吴佳佳. 独柱墩梁桥抗倾覆加固及影响因素分析. 北方交通. 2023(08): 10-13 . 百度学术
    10. 贺超,曾涛. 山区高墩小半径曲线箱梁桥设计. 四川建筑. 2023(05): 88-91 . 百度学术
    11. 吴刚,王艺钦,宋帅,刘旭政,吴必涛,黄云. 爬移状态对服役曲线梁桥抗震性能影响分析. 地震工程学报. 2023(06): 1283-1293 . 百度学术
    12. 李永波. 连续箱梁弯桥横向爬移病害成因分析及处治方案. 低温建筑技术. 2022(02): 128-131 . 百度学术
    13. 闫杰栋,刘承启. 极小半径预应力弯梁桥的扭矩及位移分析. 市政技术. 2022(09): 110-115+131 . 百度学术
    14. 郭秋雨. 不同下部结构对曲线桥梁横向爬移的影响研究. 四川建筑. 2022(05): 212-214+219 . 百度学术
    15. 肖健,刘康. 混凝土曲线梁桥的主梁爬移机理研究. 现代制造技术与装备. 2022(11): 122-125 . 百度学术
    16. 周勇军,王业路,赵煜,薛宇欣,韩智强. 公路独柱墩桥梁抗倾覆研究综述. 交通运输工程学报. 2022(06): 46-66 . 百度学术
    17. 钟以琛,李岩,叶长允,马小龙,林国伟. 汽车动力作用对曲线梁桥地震反应特性的影响分析. 铁道科学与工程学报. 2021(06): 1486-1495 . 百度学术
    18. 胡安庆,邓长军,任东华,周仕军. 某立交匝道桥墩梁“抵触”病害长期监测分析. 公路. 2021(10): 118-124 . 百度学术
    19. 史方华,刘苗苗,余茂峰,彭卫兵,朱志翔. 曲线梁桥爬移模式和典型案例研究. 世界桥梁. 2021(06): 96-102 . 百度学术
    20. 冯升阳,郭增伟,赵付强. 小半径曲线连续箱梁桥恒载应力的空间分布特性分析. 科学技术与工程. 2021(36): 15617-15623 . 百度学术
    21. 许斐. 曲线梁桥合理水平约束体系研究. 公路交通科技. 2020(03): 80-87 . 百度学术
    22. 余果,蒋冬情,陈瑞,王祺顺. 连续钢桁架弯梁桥支座优化方案研究. 工程建设. 2020(06): 41-44+59 . 百度学术
    23. 孙增寿,夏云飞,韩培琰. 基于实测数据的混凝土曲线梁桥温差代表值研究. 铁道科学与工程学报. 2020(07): 1751-1759 . 百度学术
    24. 陈彦江,苏鹏,闫维明. 带纵坡曲线梁桥地震响应试验研究. 桥梁建设. 2019(01): 12-17 . 百度学术
    25. 田学志. 连续梁桥整体横向旋转复位技术. 国防交通工程与技术. 2019(03): 30-34 . 百度学术
    26. 胡金海. 高速公路RC曲线连续梁桥爬移机理的定量化分析. 福州大学学报(自然科学版). 2019(05): 675-682 . 百度学术
    27. 史方华,陈林立,余茂峰,彭卫兵. 新型弯桥抗爬移支座设计与应用研究. 公路交通科技(应用技术版). 2019(10): 138-140+144 . 百度学术
    28. 彭卫兵,朱志翔,陈光军,朱鸿焕. 梁桥倾覆机理、破坏模式与计算方法研究. 土木工程学报. 2019(12): 104-113 . 百度学术
    29. 李林,唐国斌,程坤,陈宝. 基于长期监测数据的曲线箱梁桥位移研究. 公路工程. 2019(06): 147-150+250 . 百度学术
    30. 彭卫兵,沈佳栋,唐翔,张勇. 近期典型桥梁事故回顾、分析与启示. 中国公路学报. 2019(12): 132-144 . 百度学术
    31. 郑国华,朱文正,叶景荣,于红红. 某匝道桥横向滑移现象及应对方法研究. 广州大学学报(自然科学版). 2018(02): 48-54 . 百度学术
    32. 邢世玲,徐秀丽,李枝军,李翊策. 墩-梁固结的曲线梁桥预应力作用试验研究. 桥梁建设. 2018(02): 49-54 . 百度学术
    33. 熊文,鲁圣弟,龚玄,崔珊珊,叶见曙. 独柱墩梁桥倾覆临界状态分析及规范法的适用性. 中国公路学报. 2018(03): 49-58 . 百度学术
    34. 吕长荣,钟毅. 大跨径连续刚构-连续梁桥梁体纵向缩短及梁端横向偏位研究. 山东交通学院学报. 2018(03): 51-56+70 . 百度学术
    35. 王解军,冯珍,黄佳,杨孝博. 匝道固结体系曲线箱梁桥弯扭性能分析. 公路工程. 2018(05): 99-104 . 百度学术
    36. 邢世玲,张佳,朱利明. 独柱混凝土曲线连续梁桥抗倾覆稳定性研究. 世界桥梁. 2017(05): 33-38 . 百度学术
    37. 李杰,冯冠杰,林丽娟,陈淮. 温度作用下考虑残余变形累积效应的曲线梁爬移机理分析. 科学技术与工程. 2017(34): 124-129 . 百度学术
    38. 李杰,陈淮,林丽娟. 某曲线梁桥横向爬移病害及处置措施. 施工技术. 2017(16): 110-113 . 百度学术
    39. 刘英,邬晓光,钱若霖,冯宇. 考虑剪力影响的多跨曲线连续梁桥径向位移解析分析. 铁道建筑. 2017(08): 7-14 . 百度学术

    其他类型引用(30)

计量
  • 文章访问数:  450
  • HTML全文浏览量:  68
  • PDF下载量:  62
  • 被引次数: 69
出版历程
  • 收稿日期:  2019-06-02
  • 修回日期:  2019-11-04
  • 刊出日期:  2020-04-13

目录

    /

    返回文章
    返回