北京大兴国际机场航站楼核心区钢网格结构日照非均匀温度场研究

周勐, 樊健生, 刘宇飞, 张晋勋, 段先军, 雷素素

周勐, 樊健生, 刘宇飞, 张晋勋, 段先军, 雷素素. 北京大兴国际机场航站楼核心区钢网格结构日照非均匀温度场研究[J]. 工程力学, 2020, 37(5): 46-54,73. DOI: 10.6052/j.issn.1000-4750.2019.07.0374
引用本文: 周勐, 樊健生, 刘宇飞, 张晋勋, 段先军, 雷素素. 北京大兴国际机场航站楼核心区钢网格结构日照非均匀温度场研究[J]. 工程力学, 2020, 37(5): 46-54,73. DOI: 10.6052/j.issn.1000-4750.2019.07.0374
ZHOU Meng, FAN Jian-sheng, LIU Yu-fei, ZHANG Jin-xun, DUAN Xian-jun, LEI Su-su. ANALYSIS ON NON-UNIFORM TEMPERATURE FIELD OF STEEL GRIDS OF BEIJING DAXING INTERNATIONAL AIRPORT TERMINAL BUILDING CORE AREA CONSIDERING SOLAR RADIATION[J]. Engineering Mechanics, 2020, 37(5): 46-54,73. DOI: 10.6052/j.issn.1000-4750.2019.07.0374
Citation: ZHOU Meng, FAN Jian-sheng, LIU Yu-fei, ZHANG Jin-xun, DUAN Xian-jun, LEI Su-su. ANALYSIS ON NON-UNIFORM TEMPERATURE FIELD OF STEEL GRIDS OF BEIJING DAXING INTERNATIONAL AIRPORT TERMINAL BUILDING CORE AREA CONSIDERING SOLAR RADIATION[J]. Engineering Mechanics, 2020, 37(5): 46-54,73. DOI: 10.6052/j.issn.1000-4750.2019.07.0374

北京大兴国际机场航站楼核心区钢网格结构日照非均匀温度场研究

基金项目: 

国家自然科学基金项目(51725803);北京市科技计划课题项目(Z161100005116009);北京市自然科学基金项目(8192023)

详细信息
    作者简介:

    周勐(1994-),男,河北人,博士生,主要从事组合结构与温度效应研究(E-mail:zhoumengthu@163.com);樊健生(1975-),男,山东人,教授,工学博士,所长,钢结构协会钢-混凝土组合结构分会副理事长,主要从事组合结构研究(E-mail:fanjsh@tsinghua.edu.cn);张晋勋(1967-),男,山西人,教授级高工,工学博士,集团总工程师,主要从事施工力学与施工控制研究(E-mail:jinxun8100@foxmail.com);段先军(1972-),男,湖北人,教授级高工,硕士,项目总工程师,钢结构协会专家委员会委员,从事施工技术研究(E-mail:1661532600@qq.com);雷素素(1988-),女,福建人,高工,工学博士,从事结构抗震与健康监测研究(E-mail:moonlss1988@163.com).

  • 中图分类号: TU393.3;TU312.1

ANALYSIS ON NON-UNIFORM TEMPERATURE FIELD OF STEEL GRIDS OF BEIJING DAXING INTERNATIONAL AIRPORT TERMINAL BUILDING CORE AREA CONSIDERING SOLAR RADIATION

  • 摘要: 温度荷载在大跨空间结构的设计与施工过程中十分重要,由于太阳辐射以及各构件之间遮挡关系的复杂性,结构中的温度场一般是不均匀的。该文基于消隐算法,实现了圆截面杆系构件日照阴影的计算方法,编制了能够考虑地理气象信息的太阳辐射量计算程序。以北京大兴国际机场钢网格结构为背景,在ANSYS软件的热分析模块中模拟了结构的瞬态温度场,并对瞬态温度场的重要求解条件进行了讨论。结果表明,考虑太阳辐射后,大跨空间结构中的温度场具有明显的非均匀性与时变特征,日照阴影在温度场模拟中不可忽略。对于较为复杂的大跨空间结构,该文建议的温度场模拟方法为施工过程的精确模拟提供了重要基础。
    Abstract: Temperature is an important load in the design and construction process of large-span spatial structures, and a temperature field is generally non-uniform due to the complexity of solar radiation and the occlusion relationship between structural members. Based on blanking algorithm, a special method is realized to calculate the sunlight shadow of round section members, and the solar radiation calculation program capable of considering geographic and weather information is developed. Taking the steel space truss of Beijing Daxing International Airport as an example, the transient temperature field of the structure is simulated using the thermal analysis module of ANSYS software, and several important solution conditions are discussed. The results show that:the temperature field in the large-span spatial structure shows obvious non-uniformity and time-varying characteristics after considering solar radiation, and the sunlight shadow should not be ignored. For large-span spatial structures which are relatively complex, the simulation method of temperature field proposed provides an important basis for the accurate simulation of the construction process.
  • [1]

    Duffie J A, Beckman W A. Solar engineering of thermal processes[M]. Hoboken, New Jersey, USA:John Wiley & Sons, Inc, 2013.

    [2] 宋爱国, 王福然. 北京地区晴天太阳辐射模型初探[J]. 太阳能学报, 1993, 14(3):251-255.

    Song Aiguo, Wang Furan. Preliminary study on clear day solar radiation model of Beijing region[J]. Acta Energiae Solaris Sinica, 1993, 14(3):251-255. (in Chinese)

    [3]

    Rigollier C, Bauer O, Wald L. On the clear sky model of the ESRA-European Solar Radiation Atlas-with respect to the Heliosat method[J]. Solar energy, 2000, 68(1):33-48.

    [4]

    Ineichen P. Validation of models that estimate the clear sky global and beam solar irradiance[J]. Solar Energy, 2016, 132:332-344.

    [5] 刘红波, 陈志华, 周婷. 太阳辐射作用下钢管温度场分析[J]. 空间结构, 2011, 17(2):65-71.

    Liu Hongbo, Chen Zhihua, Zhou Ting. Research on temperature field of steel tube under solar radiation[J]. Spatial Structures, 2011, 17(2):65-71. (in Chinese)

    [6]

    Liu H, Chen Z, Zhou T. Theoretical and experimental study on the temperature distribution of H-shaped steel members under solar radiation[J]. Applied Thermal Engineering, 2012, 37:329-335.

    [7] 刘树堂, 龙期亮. 基于ASHRAE晴空模型的日照作用下钢构件的温度场分析[J]. 建筑钢结构进展, 2012, 14(5):35-43.

    Liu Shutang, Long Qiliang. Analysis of the temperature field of steel members in sunshine based on ASHRAE clear-sky model[J]. Progress in Steel Building Structures, 2012, 14(5):35-43. (in Chinese)

    [8] 钱宏亮, 刘岩, 范峰, 等. 上海65 m射电望远镜太阳辐射作用分析[J]. 工程力学, 2012, 29(10):378-384.

    Qian Hongliang, Liu Yan, Fan Feng, et al. The analysis on solar radiation of Shanghai 65 m radio telescope[J]. Engineering Mechanics, 2012, 29(10):378-384. (in Chinese)

    [9] 陈志华, 刘红波, 闫翔宇, 等. 茌平体育馆弦支穹顶叠合拱结构的温度场研究[J]. 空间结构, 2010, 16(1):76-81.

    Chen Zhihua, Liu Hongbo, Yan Xiangyu, et al. Research on the temperature field of suspend dome with stacked arch in Chiping Gymnasium[J]. Spatial Structures, 2010, 16(1):76-81. (in Chinese)

    [10] 金晓飞, 范峰, 李景芳. 山西三馆日照非均匀温度作用分析[J]. 空间结构, 2012, 18(3):80-85.

    Jin Xiaofei, Fan Feng, Li Jingfang. Study on the nonuniform temperature load by sunshine of Shanxi Three Gymnasiums[J]. Spatial Structure, 2012, 18(3):80-85. (in Chinese)

    [11]

    Zhao Z, Liu H, Chen Z. Thermal behavior of large-span reticulated domes covered by ETFE membrane roofs under solar radiation[J]. Thin-Walled Structures, 2017, 115:1-11.

    [12] 罗尧治, 梅宇佳, 沈雁彬, 等. 国家体育场钢结构温度与应力实测及分析[J]. 建筑结构学报, 2013, 34(11):24-32.

    Luo Yaozhi, Mei Yujia, Shen Yanbin, et al. Field measurement of temperature and stress on steel structure of the National Stadium and analysis of temperature action[J]. Journal of Building Structures, 2013, 34(11):24-32. (in Chinese)

    [13]

    Park H, Lee H, Choi S, et al. A practical monitoring system for the structural safety of mega-trusses using wireless vibrating wire strain gauges[J]. Sensors, 2013, 13(12):17346-17361.

    [14]

    Kasten F. The Linke turbidity factor based on improved values of the integral Rayleigh optical thickness[J]. Solar Energy, 1996, 56(3):239-44.

    [15] 岳艳霞, 智利辉, 王磊, 等. 石家庄市区域自动气象站气温数据适用性分析[J]. 气象与环境学报, 2017, 33(2):53-62.

    Yue Yanxia, Zhi Lihui, Wang Lei, et al. Applicability analysis of air temperature data from regional automatic weather stations in Shijiazhuang[J]. Journal of Meteorology and Environment, 2017, 33(2):53-62. (in Chinese)

    [16] 杨世铭. 传热学[M]. 北京:高等教育出版社, 1987. Yang Shiming. Heat Transfer theory[M]. Beijing:Higher Education Press, 2006. (in Chinese)
  • 期刊类型引用(12)

    1. 胡鹏华,张文津,胡晓华,金华建,贾宝莹,李相辰,李云. 大跨度钢结构施工过程的数值模拟与二次开发. 建筑钢结构进展. 2025(01): 106-113 . 百度学术
    2. 王锦涛,刘宇飞,樊健生,周勐,聂建国,强安鹏,周照飞. 大跨斜腿钢管桁架结构日照非均匀温度场研究. 工程力学. 2024(01): 208-218 . 本站查看
    3. 樊健生,魏晓晨,宋神友,金文良,苏宗贤,刘宇飞. 深中通道钢壳-混凝土组合沉管浇筑变形研究. 工程力学. 2024(05): 167-178 . 本站查看
    4. 万华平,胡鹏华,刘玄,张文杰,秦凯,罗尧治. 北京大兴国际机场航站楼风场和风压特性实测. 建筑结构学报. 2024(07): 120-130 . 百度学术
    5. 柳子通,纪晗,肖志杨,谢鹏宇,沈伟,常珂. 钟祥市文化综合体项目科技馆结构设计. 建筑结构. 2024(17): 36-41 . 百度学术
    6. 李惠宏,张印,陈锐,单体钧,杜颜胜. 高原环境下大跨空间网架结构日照非均匀温度效应研究. 河南科学. 2024(09): 1290-1297 . 百度学术
    7. 朱颖,郭辉,孙大奇,双妙. 铁路钢桁梁悬索桥日照时空非均匀温度场及其效应精细化分析. 工程力学. 2024(12): 80-94 . 本站查看
    8. 姜守芳,李会军,龙婷婷. 考虑节点偏差、杆件缺陷与偏心的单层三向柱面网壳稳定性研究. 工程力学. 2022(02): 178-188 . 本站查看
    9. 樊健生,王琛,宋凌寒. 土木工程智能计算分析研究进展与应用. 建筑结构学报. 2022(09): 1-22 . 百度学术
    10. 马强,沈文爱,陈潘,万华平. 国家体育场日照非均匀温度效应模拟. 土木工程与管理学报. 2022(04): 137-144 . 百度学术
    11. 李玉学,冯励睿,李海云,田玉基. 大跨屋盖结构脉动风振响应特性预测方法研究. 工程力学. 2021(07): 159-166+182 . 本站查看
    12. 李震,于跃,于今,郝宇超,万涛. 生物质热压成型温度场离散元模拟. 锻压技术. 2021(07): 100-105 . 百度学术

    其他类型引用(13)

计量
  • 文章访问数:  595
  • HTML全文浏览量:  149
  • PDF下载量:  79
  • 被引次数: 25
出版历程
  • 收稿日期:  2019-07-11
  • 修回日期:  2019-11-02

目录

    /

    返回文章
    返回