基于三场变分原理的对偶mortar有限元法

周墨臻, 张丙印, 张顶立, 方黄城

周墨臻, 张丙印, 张顶立, 方黄城. 基于三场变分原理的对偶mortar有限元法[J]. 工程力学, 2020, 37(6): 51-59. DOI: 10.6052/j.issn.1000-4750.2019.09.0540
引用本文: 周墨臻, 张丙印, 张顶立, 方黄城. 基于三场变分原理的对偶mortar有限元法[J]. 工程力学, 2020, 37(6): 51-59. DOI: 10.6052/j.issn.1000-4750.2019.09.0540
ZHOU Mo-zhen, ZHANG Bing-yin, ZHANG Ding-li, FANG Huang-cheng. THE DUAL MORTAR FINITE ELEMENT METHOD BASED ON THREE-FIELD VARIATIONAL PRINCIPLE[J]. Engineering Mechanics, 2020, 37(6): 51-59. DOI: 10.6052/j.issn.1000-4750.2019.09.0540
Citation: ZHOU Mo-zhen, ZHANG Bing-yin, ZHANG Ding-li, FANG Huang-cheng. THE DUAL MORTAR FINITE ELEMENT METHOD BASED ON THREE-FIELD VARIATIONAL PRINCIPLE[J]. Engineering Mechanics, 2020, 37(6): 51-59. DOI: 10.6052/j.issn.1000-4750.2019.09.0540

基于三场变分原理的对偶mortar有限元法

基金项目: 

中央高校基本科研业务费专项资金项目(2018RC014);国家重点研发计划项目(2017YFC0805400);国家自然科学基金青年科学基金项目(51808034)

详细信息
    作者简介:

    周墨臻(1987-),男,江西人,讲师,博士,主要从事岩土及地下工程研究(E-mail:mzzhou@bjtu.edu.cn);张丙印(1963-),男,河北人,教授,博士,主要从事岩土工程研究(E-mail:byzhang@tsinghua.edu.cn);方黄城(1993-),男,浙江人,博士生,主要从事隧道及地下工程研究(E-mail:16115281@bjtu.edu.cn).

  • 中图分类号: O241.82

THE DUAL MORTAR FINITE ELEMENT METHOD BASED ON THREE-FIELD VARIATIONAL PRINCIPLE

  • 摘要: 通过引入独立媒介面,将mortar有限元法由二场变分原理推广到三场变分原理。通过采用满足双正交性条件的对偶基函数离散Lagrange乘子空间,实现了Lagrange乘子的凝聚,由此提出了基于三场变分原理的对偶mortar有限元法。提出的新方法同时解决了常规mortar元的约束交叉、主从偏见及求解效率等问题。自主编制了相应的计算程序,并采用两个三维数值算例对新方法进行了验证。研究结果表明:基于三场变分原理的对偶mortar方法对界面连续性条件的求解精度高,可有效用于含约束交叉的非协调网格计算,所支持的复杂子区域划分使得有限元分析更为灵活。
    Abstract: An independent medium surface is introduced to extend the mortar method from a two-field variational principle to a three-field version. The Lagrange multipliers are discretized by using dual basis functions. The dual basis fulfills bi-orthogonal conditions, resulting in the static condensation of the Lagrange multipliers. The dual mortar finite element method using the three-field variational principle is then proposed. This method overcomes the well-known deficiencies of the conventional mortar method, such as the cross-point constraint problem, the master-slave biased problem and the efficiency problem associated with large-scale computations. An in-house code is developed correspondingly and then used to validate the proposed method by two three-dimensional numerical examples. The method achieves high accuracy for interfacial continuous conditions. It can be applied to treat the nonconforming mesh even involving cross-point constraints. The resultant support for the complex subdomain division introduces significant flexibilities to the finite element analysis.
  • [1]

    Tian R, Wu Z D, Wang C W. Scalable FEA on non-conforming assembly mesh[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 266:98-111.

    [2]

    Pantano A, Averill R C. A penalty-based finite element interface technology[J]. Computers & Structures, 2002, 80(22):1725-1748.

    [3]

    Kim H G. Arbitrary placement of local meshes in a global mesh by the interface-element method (lEM)[J]. International Journal for Numerical Methods in Engineering, 2003, 56(15):2279-2312.

    [4]

    Atroshchenko E, Tomar S, Xu G, et al. Weakening the tight coupling between geometry and simulation in isogeometric analysis:from sub-and super-geometric analysis to geometry-independent field approximation (GIFT)[J]. International Journal for Numerical Methods in Engineering, 2018, 114(10):1131-1159.

    [5]

    Tian R, To A C, Liu W K. Conforming local meshfree method[J]. International Journal for Numerical Methods in Engineering, 2011, 86(3):335-357.

    [6]

    Bitencourt L A G, Manzoli O L, Prazeres P G C, et al. A coupling technique for non-matching finite element meshes[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 290:19-44.

    [7] 姜玉曦, 周海兵, 熊俊, 等. 基于双三次曲面片的三维接触面光滑方法[J]. 工程力学, 2016, 33(2):11-17.

    Jiang Yuxi, Zhou Haibing, Xiong Jun, et al. A 3D contact smoothing method based on bi-cubic parametric patches[J]. Engineering Mechanics, 2016, 33(2):11-17. (in Chinese)

    [8] 薛冰寒, 林皋, 胡志强, 等. 求解摩擦接触问题的IGA-B可微方程组方法[J]. 工程力学, 2016, 33(10):35-43.

    Xue Binghan, Lin Gao, Hu Zhiqiang, et al. Analysis of frictional contact mechanics problems by IGA-B differential equation method[J]. Engineering Mechanics, 2016, 33(10):35-43. (in Chinese)

    [9] 李伟, 郑宏, 郭宏伟. 基于MLS-NMM的摩擦接触问题研究[J]. 工程力学, 2017, 34(11):18-25.

    Li Wei, Zheng Hong, Guo Hongwei. The research of frictional contact problem based on MLS-NMM[J]. Engineering Mechanics, 2017, 34(11):18-25. (in Chinese)

    [10]

    Cafiero M, Lloberas-Valls O, Cante J, et al. The domain interface method:a general-purpose non-intrusive technique for non-conforming domain decomposition problems[J]. Computational Mechanics, 2016, 57(4):555-581.

    [11]

    Duval M, Passieux J C, Salaun M, et al. Non-intrusive coupling:recent advances and scalable nonlinear domain decomposition[J]. Archives of Computational Methods in Engineering, 2016, 23(1):17-38.

    [12]

    Ganguly S, Layton J B, Balakrishna C. A coupling of multi-zone curved Galerkin BEM with finite elements for independently modelled sub-domains with non-matching nodes in elasticity[J]. International Journal for Numerical Methods in Engineering, 2004, 59(8):1021-1038.

    [13]

    Ruberg T, Schanz M. Coupling finite and boundary element methods for static and dynamic elastic problems with non-conforming interfaces[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 198(3/4):449-458.

    [14]

    Pasquariello V, Hammerl G, Orley F, et al. A cut-cell finite volume-finite element coupling approach for fluid-structure interaction in compressible flow[J]. Journal of Computational Physics, 2016, 307:670-695.

    [15]

    Ross M R, Sprague M A, Felippa C A, et al. Treatment of acoustic fluid-structure interaction by localized Lagrange multipliers and comparison to alternative interface-coupling methods[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(9/10/11/12):986-1005.

    [16]

    Farah P, Vuong A T, Wall W A, et al. Volumetric coupling approaches for multiphysics simulations on non-matching meshes[J]. International Journal for Numerical Methods in Engineering, 2016, 108(12):1550-1576.

    [17] 周墨臻, 钱晓翔, 张丙印. 地下工程中的非线性接触算法研究及数值实现[J]. 岩石力学与工程学报, 2014, 33(12):2390-2396.

    Zhou Mozhen, Qian Xiaoxiang, Zhang Bingyin. Algorithm and numerical analysis method for nonlinear contact problems in underground engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(12):2390-2396. (in Chinese)

    [18]

    Puso M A, Laursen T A. A mortar segment-to-segment frictional contact method for large deformations[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(45):4891-4913.

    [19]

    Tur M, Fuenmayor F J, Wriggers P. A mortar-based frictional contact formulation for large deformations using Lagrange multipliers[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(37):2860-2873.

    [20]

    Apostolatos A, Schmidt R, Wuchner R, et al. A Nitsche-type formulation and comparison of the most common domain decomposition methods in isogeometric analysis[J]. International Journal for Numerical Methods in Engineering, 2014, 97(7):473-504.

    [21]

    Manzoli O L, Cleto P R, Sanchez M, et al. On the use of high aspect ratio finite elements to model hydraulic fracturing in deformable porous media[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 350:57-80.

    [22]

    Aminpour M A, Ransom J B, Mccleary S L. A coupled analysis method for structures with independently modeled finite-element subdomains[J]. International Journal for Numerical Methods in Engineering, 1995, 38(21):3695-3718.

    [23]

    Otto P, De Lorenzis L, Unger J F. Coupling a NURBS contact interface with a higher order finite element discretization for contact problems using the mortar method[J]. Computational Mechanics, 2019, 63(6):1203-1222.

    [24]

    Sauer R A. Local finite element enrichment strategies for 2D contact computations and a corresponding post-processing scheme[J]. Computational Mechanics, 2013, 52(2):301-319.

    [25]

    Sohn D, Jin S. Polyhedral elements with strain smoothing for coupling hexahedral meshes at arbitrary nonmatching interfaces[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 293:92-113.

    [26]

    Zhang J Q, Song C M. A polytree based coupling method for non-matching meshes in 3D[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 349:743-773.

    [27] 吴宜峰, 王浩, 李爱群, 等. 新型多功能隔震支座力学性能的数值模拟与实验验证[J]. 工程力学, 2018, 35(2):195-202.

    Wu Yifeng, Wang Hao, Li Aiqun, et al. Numerical simulation and experimental verification of the mechanical properties of multifunctional isolation bearings[J]. Engineering Mechanics, 2018, 35(2):195-202.

    [28] 寇峻瑜, 赵鑫, 张鹏, 等. 高速滚滑下轮轨表层材料的应变率水平估计[J]. 工程力学, 2019, 36(4):239-247.

    Kou JunYu, Zhao Xin, Zhang Peng, et al. Estimation of strain rates for wheel-rail surface materials under highspeed rolling-sliding contact[J]. Engineering Mechanics, 2019, 36(4):239-247.

    [29] 许黎明, 刘超, 赵鑫, 等. 全轮对曲线通过时的瞬态滚动接触行为模拟研究[J]. 工程力学, 2019, 36(11):203-211.

    Xu Liming, Liu Chao, Zhao Xin, et al. Analyses of transient wheel-rail rolling contact behavior during curving[J]. Engineering Mechanics, 2019, 36(11):203-211.

    [30]

    Puso M A, Sanders J, Settgast R. An embedded mesh method in a multiple material ALE[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 245:273-289.

    [31]

    Wohlmuth B. A mortar finite element method using dual spaces for the Lagrange multiplier[J]. SIAM Journal on Numerical Analysis, 2000, 38(3):989-1012.

    [32]

    Brivadis E, Buffa A, Wohlmuth B, et al. Isogeometric mortar methods[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 284:292-319.

    [33] 薛冰寒, 林皋, 庞林, 等. 热传导问题的比例边界等几何Mortar方法[J]. 工程热物理学报, 2016, 37(12):2645-2652.

    Xue Binghan, Lin Gao, Pang Lin, et al. A scaled boundary isogeometric mortar method applied to heat conduction problems[J]. Journal of Engineering Thermophysics, 2016, 37(12):2645-2652. (in Chinese)

    [34] 薛冰寒, 林皋, 胡志强. 基于非重叠Mortar方法的比例边界等几何分析[J]. 计算力学学报, 2017, 34(4):447-452.

    Xue Binghan, Lin Gao, Hu Zhiqiang. Scaled boundary isogeometric analysis based on non-overlapping mortar method[J]. Journal of Computational Mechanics, 2017, 34(4):447-452. (in Chinese)

    [35]

    Wunderlich L, Seitz A, Alaydın M D, et al. Biorthogonal splines for optimal weak patch-coupling in isogeometric analysis with applications to finite deformation elasticity[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 346:197-215.

    [36]

    Coox L, Greco F, Atak O, et al. A robust patch coupling method for NURBS-based isogeometric analysis of non-conforming multipatch surfaces. Computer Methods in Applied Mechanics and Engineering, 2017, 316:235-260.

    [37]

    Zou Z, Scott M A, Borden M J, et al. Isogeometric Bezier dual mortaring:Refineable higher-order spline dual bases and weakly continuous geometry. Computer Methods in Applied Mechanics and Engineering, 2018, 333:497-534.

    [38]

    Dittmann M, Schuss S, Wohlmuth B, et al. Crosspoint modification for multi-patch isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 2020, 360:112768.

    [39]

    Wohlmuth B. A nu-cycle multigrid approach for mortar finite elements[J]. SIAM Journal on Numerical Analysis, 2005, 42(6):2476-2495.

    [40]

    Zhou Mozhen, Zhang Bingyin, Peng Chong. Numerical evaluation of soft inter-slab joint in concrete-faced rockfill dam with dual mortar finite element method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42(5):781-805.

    [41]

    Popp A, Seitz A, Gee M W, et al. Improved robustness and consistency of 3D contact algorithms based on a dual mortar approach[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 264:67-80.

  • 期刊类型引用(1)

    1. 戚亮, 李飞. 车辙变形对长大纵坡路段沥青路面排水性能的影响. 公路. 2025(06) 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  782
  • HTML全文浏览量:  59
  • PDF下载量:  86
  • 被引次数: 3
出版历程
  • 收稿日期:  2019-09-21
  • 修回日期:  2020-04-10
  • 刊出日期:  2020-06-13

目录

    FANG Huang-cheng

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回