EXPERIMENTAL STUDY ON THE EFFECT OF AN EPOXY ASPHALT CONCRETE PAVEMENT ON AN ORTHOTROPIC STEEL DECK
-
摘要: 某悬索桥钢箱梁采用正交异性钢桥面板,运行数年后钢桥面板构件连接部位出现了4种疲劳裂纹,为考察新换环氧沥青混凝土铺装对疲劳敏感部位受力影响,建立了有限元模型,开展了长达6年的现场试验,试验涵盖原铺装、铺装铲除、新铺装三种状态,测试了疲劳敏感部位的受力及构件变形规律,开展了考虑温度影响的疲劳寿命改善效果分析研究。结果表明:6年试验期内环氧沥青混凝土铺装与钢桥面板组合受力处于稳定状态,在低温环境下,疲劳敏感部位1~4应力改善效果分别为80%、14%、32%、46%;4个疲劳敏感部位应力与温度线性关联,线性速率分别为−4.00、0.64、1.89、1.91;将实测应力统一至年均温度后,新铺装对部位1疲劳寿命相对改善较大,约提高了2.95倍,对部位4疲劳寿命改善次之,约提高1.64倍,对于部位2、3疲劳寿命改善效果不明显,高温环境下部位2、3开裂可能性仍较大。Abstract: The steel orthotropic deck was used in the steel box girder of a suspension bridge. Four types of fatigue cracks were discovered at some connections of the orthotropic deck during service. Subsequently the pavement on the deck was replaced with epoxy asphalt concrete. To analyze the effect of the new pavement on the fatigue sensitive regions, a finite element model was established and field bridge tests were conducted at three states, namely, original pavement, surfacing, and new pavement. The test lasted for 6 years under the new pavement state. The stress and deformation of the fatigue sensitive regions were measured. The fatigue life improvement was analyzed considering the temperature based on the measured data. The results show that the epoxy asphalt concrete pavement was in a stable working state during the test period, that the stress improvement effects in the fatigue sensitive regions 1 to 4 were 80%, 14%, 32%, 46% in a low temperature environment, respectively. The stresses of the four fatigue sensitive regions were linearly correlated with the temperature, and the linear ratios are −4.00, 0.64, 1.89, 1.91, respectively. After normalizing the measured stress by the average annual temperature, the fatigue life was improved by 2.95 times in region 1, and by 1.64 times in region 4. The fatigue lives in regions 2 and 3 were not improved obviously, and the cracking probabilities of regions 2 and 3 were still high in a high temperature environment.
-
-
表 1 试验工况安排
Table 1 Arrangement of field test
试验代号 铺装状态 试验时间 温度/(℃) 加载车重量/kg 前轴 后轴 原-10-12 原铺装 2010-12-05 17.1 10500 33200 除-10-12 铲除后 2010-12-10 16.0 11100 32100 新-11-01 新铺装 2011-01-07 14.6 10800 33600 新-11-08 新铺装 2011-08-09 31.4 9400 31900 新-12-01 新铺装 2012-01-06 8.3 9300 33800 新-12-06 新铺装 2012-06-26 29.4 9800 31700 新-16-01 新铺装 2016-01-16 12.1 8700 30800 表 2 实测与理论计算结果对比
Table 2 Measured and theoretical calculation results
分项 应力/MPa 变形/mm 部位1 部位2 部位3 部位4 D2 D3 实测 −51.10 123.60 102.00 91.50 2.44 2.61 理论 −60.00 145.80 101.80 84.80 2.27 2.35 实测/理论 0.85 0.85 1.00 1.08 1.07 1.11 表 3 不同测试部位历次试验不利值统计
Table 3 Statistics of critical measurements of corresponding regions
试验工况 应力/MPa 挠度/mm 部位1 部位2 部位3 部位4 面板 U肋 原-10-12 −132 136 119 119 3.1 3.3 除-10-12 −179 142 125 139 3.2 3.6 新-11-01 −51 124 102 91 2.5 2.5 新-11-08 −112 135 119 114 3.2 2.9 新-12-01 −40 120 79 69 2.2 2.3 新-12-06 −129 133 122 113 3.0 3.3 新-16-01 −35 122 85 75 2.4 2.5 表 4 应力及变形改善效果
Table 4 Stress and deflection improvement effects
试验工况 应力改善效果/(%) 变形改善效果/(%) 部位1 部位2 部位3 部位4 面板 U肋 原-10-12 27 4 5 14 6 8 新-11-01 71 13 19 34 23 30 新-11-08 37 5 5 18 1 21 新-12-01 78 16 37 51 33 36 新-12-06 28 6 3 19 8 10 新-16-01 80 14 32 46 27 31 表 5 新铺装对疲劳敏感部位寿命相对改善效果
Table 5 Relative fatigue life improvement of sensitive regions with new pavement
考察部位 1 2 3 4 Δσ1/MPa −132 136 119 119 Δσ2/MPa −92 129 108 101 (Δσ1/Δσ2)m 2.95 1.17 1.35 1.64 -
[1] 张清华, 卜一之, 李乔. 正交异性钢桥面板疲劳问题的研究进展[J]. 中国公路学报, 2017, 30(3): 14 − 30. doi: 10.3969/j.issn.1001-7372.2017.03.002 Zhang Qinghua, Bu Yizhi, Li Qiao. Review on fatigue problems of orthotropic steel bridge deck [J]. China Journal of Highway and Transport, 2017, 30(3): 14 − 30. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.03.002
[2] 张肖宁, 张顺先, 徐伟, 等. 基于使用性能的钢桥面铺装环氧沥青混凝土设计[J]. 华南理工大学学报(自然科学版), 2012, 40(7): 1 − 7. Zhang Xiaoning, Zhang Shunxian, Xu Wei, et al. Application performance-based design of epoxy asphalt concrete applied to steel bridge deck pavement [J]. Journal of South China University of Technology (Natural Science Edition), 2012, 40(7): 1 − 7. (in Chinese)
[3] 曾志斌. 正交异性钢桥面板典型疲劳裂纹分类及其原因分析[J]. 钢结构, 2011, 26(2): 9 − 15. doi: 10.3969/j.issn.1007-9963.2011.02.003 Zeng Zhibin. Classification and cause analysis of typical fatigue cracks in orthotropic steel bridge deck [J]. Steel Construction, 2011, 26(2): 9 − 15. (in Chinese) doi: 10.3969/j.issn.1007-9963.2011.02.003
[4] 曾志斌. 正交异性钢桥面板疲劳裂纹的维修加固方法[J]. 钢结构, 2013, 28(4): 20 − 24. doi: 10.3969/j.issn.1007-9963.2013.04.005 Zeng Zhibin. Repair and reinforcement methods of fatigue cracks in orthotropic steel bridge deck [J]. Steel Construction, 2013, 28(4): 20 − 24. (in Chinese) doi: 10.3969/j.issn.1007-9963.2013.04.005
[5] 张勇, 高岩, 王石磊. 桥面铺装改造对正交异性钢桥面板受力性能的影响[J]. 桥梁建设, 2016, 46(4): 55 − 60. Zhang Yong, Gao Yan, Wang Shilei. Effect of deck pavement retrofitting on mechanical properties of orthotropic steel deck [J]. Bridge Construction, 2016, 46(4): 55 − 60. (in Chinese)
[6] Wang Shilei, Ke Zaitian, Gao Yan, et al. Long-term in situ performance investigation of orthotropic steel bridge deck strengthened by SPS and RPC solutions [J]. Journal of Bridge Engineering, 2019, 24(6): 04019054. doi: 10.1061/(ASCE)BE.1943-5592.0001421
[7] Su Li, Wang Shilei, Gao Yan, et al. In situ experimental study on the behavior of UHPC composite orthotropic steel bridge deck [J]. Materials, 2020, 13(1): 253. doi: 10.3390/ma13010253
[8] 张顺先, 张肖宁, 徐伟, 等. 基于冲击韧性的钢桥面铺装环氧沥青混凝土疲劳性能设计研究[J]. 振动与冲击, 2013, 32(23): 1 − 5. doi: 10.3969/j.issn.1000-3835.2013.23.001 Zhang Shunxian, Zhang Xiaoning, Xu wei, et al. Epoxy asphalt concrete fatigue performance design for a steel bridge deck pavement based on impact toughness [J]. Journal of Vibration and Shock, 2013, 32(23): 1 − 5. (in Chinese) doi: 10.3969/j.issn.1000-3835.2013.23.001
[9] 马林, 黄雷, 代希华, 等. 正交异性钢桥面环氧沥青铺装层疲劳耐久极限研究[J]. 桥梁建设, 2019, 49(4): 29 − 34. doi: 10.3969/j.issn.1003-4722.2019.04.006 Ma Lin, Huang Lei, Dai Xihua, et al. Study on fatigue durability of epoxy asphalt pavement on orthotropic steel bridge deck [J]. Bridge Construction, 2019, 49(4): 29 − 34. (in Chinese) doi: 10.3969/j.issn.1003-4722.2019.04.006
[10] 李梦琪, 张锋, 冯德成, 等. 车桥耦合下钢桥面沥青铺装层动力响应研究[J]. 工程力学, 2019, 36(12): 177 − 187. Li Mengqi, Zhang Feng, Feng Decheng, et al. Dynamic response of steel deck asphalt pavement considering vehicle-bridge coupling effect [J]. Engineering Mechanics, 2019, 36(12): 177 − 187. (in Chinese)
[11] 蒲黔辉, 高立强, 刘振标, 等. 基于热点应力法的正交异性钢桥面板疲劳验算[J]. 西南交通大学学报, 2013, 48(3): 395 − 401. doi: 10.3969/j.issn.0258-2724.2013.03.001 Pu Qianhui, Gao Liqiang, Liu Zhenbiao, et al. Fatigue assessment of orthotropic steel bridge deck based on hot spot stress method [J]. Journal of Southwest Jiaotong University, 2013, 48(3): 395 − 401. (in Chinese) doi: 10.3969/j.issn.0258-2724.2013.03.001
[12] 孙训方, 方孝淑, 关来泰. 材料力学(II) [M]. 第4版. 北京: 高等教育出版社, 2002. Sun Xunfang, Fang Shuxiao, Guan Laitai. Mechanics of materials (II) [M]. 4th ed. Beijing: Higher Education Press, 2002. (in Chinese)
[13] 宋永生, 丁幼亮, 王晓晶, 等. 运营状态下悬索桥钢桥面板疲劳效应监测与分析[J]. 工程力学, 2013, 30(11): 94 − 100. Song Yongsheng, Ding Youliang, Wang Xiaojing, et al. Monitoring and analysis of fatigue effects on steel deck of a suspension bridge in working conditions [J]. Engineering Mechanics, 2013, 30(11): 94 − 100. (in Chinese)
[14] 王高新, 丁幼亮, 宋永生, 等. 温度作用对带铺装层钢桥面板疲劳效应的影响研究[J]. 工程力学, 2016, 33(5): 115 − 123. Wang Gaoxin, Ding Youliang, Song Yongsheng, et al. Influence of temperature action on the fatigue effect of steel deck with pavement [J]. Engineering Mechanics, 2016, 33(5): 115 − 123. (in Chinese)
[15] 李庆扬, 王能超. 数值分析[M]. 第5版. 北京: 清华大学出版社, 2008. Li Qingyang, Wang Nengchao. Numerical analysis [M]. 5th ed. Beijing: Tsinghua University Press, 2008. (in Chinese)
[16] 朱太勇, 周广东, 张欢, 等. 钢箱梁正交异性桥面板疲劳评估全空间S-N曲线研究[J]. 工程力学, 2017, 34(11): 210 − 217. Zhu Taiyong, Zhou Guangdong, Zhang Huan, et al. A full range S-N curve for fatigue evaluation of orthotropic bridge decks in steel box-girders [J]. Engineering Mechanics, 2017, 34(11): 210 − 217. (in Chinese)
[17] 张清华, 李俊, 郭亚文, 等. 正交异性钢桥面板结构体系的疲劳破坏模式和抗力评估[J]. 土木工程学报, 2019, 52(1): 71 − 81. Zhang Qinghua, Li Jun, Guo Yawen, et al. Fatigue failure modes and resistance evaluation of orthotropic steel bridge deck structural system [J]. China Civil Engineering Journal, 2019, 52(1): 71 − 81. (in Chinese)
[18] 黄云, 张清华, 郭亚文, 等. 钢桥面板纵肋与横隔板焊接细节表面缺陷及疲劳效应研究[J]. 工程力学, 2019, 36(3): 203 − 213. Huang Yun, Zhang Qinghua, Guo Yawen, et al. Research on surface defects and fatigue effects at rib-to-crossbeam welded joints of orthotropic steel bridge decks [J]. Engineering Mechanics, 2019, 36(3): 203 − 213. (in Chinese)
[19] 崔闯, 刘益铭, 廖贵星, 等. 正交异性钢桥面板焊接接头疲劳评估方法[J]. 西南交通大学学报, 2015, 50(6): 1011 − 1017. doi: 10.3969/j.issn.0258-2724.2015.06.006 Cui Chuang, Liu Yiming, Liao Guixing, et al. Fatigue evaluation approach of weld joints on steel orthotropic bridge deck [J]. Journal of Southwest Jiaotong University, 2015, 50(6): 1011 − 1017. (in Chinese) doi: 10.3969/j.issn.0258-2724.2015.06.006
[20] 杨雅斌, 石广玉. 正交异性钢桥面板肋-面板焊缝疲劳验算的应力分析模型评估[J]. 工程力学, 2019, 36(增刊 1): 98 − 105. Yang Yabin, Shi Guangyu. Evaluation of finite element analysis models for fatigue stress at rib-to-deck welded joints of orthotropic steel deck [J]. Engineering Mechanics, 2019, 36(Suppl 1): 98 − 105. (in Chinese)
[21] 李俊, 张清华, 袁道云, 等. 基于等效结构应力法的正交异性钢桥面板体系疲劳抗力评估[J]. 中国公路学报, 2018, 31(12): 134 − 143. doi: 10.3969/j.issn.1001-7372.2018.12.013 Li Jun, Zhang Qinghua, Yuan Daoyun, et al. Fatigue resistance evaluation for structural system of orthotropic steel bridge deck based on equivalent structural stress [J]. China Journal of Highway and Transport, 2018, 31(12): 134 − 143. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.12.013
-
期刊类型引用(5)
1. 代和树,李龙起. h型桩加固边坡动力响应特性及破坏模式研究. 三峡大学学报(自然科学版). 2025(01): 50-56 . 百度学术
2. 谭晋鹏,潘旦光,王立军,丁昊,付相球,王进廷. 弹性半空间场地辐射阻尼影响下结构模态阻尼比实时耦联动力试验. 建筑结构学报. 2023(07): 27-36 . 百度学术
3. 江志伟,刘晶波. 埋深对地下结构振动台模型试验结果的影响. 工程力学. 2021(S1): 209-215 . 本站查看
4. 禹海涛,李衍熹. 土-结构动力作用体系混合试验研究进展与探讨. 中国公路学报. 2020(12): 105-117 . 百度学术
5. 李银胜,白涌滔,唐贞云. 土结相互作用对质量不规则钢框架抗地震倒塌性能的影响. 土木工程学报. 2020(S2): 22-27 . 百度学术
其他类型引用(5)