STUDY ON IMPACT PERFORMANCE OF K-TYPE TUBULAR JOINTS WITH STIFFENING INNER RINGS
-
摘要: 为揭示内置加劲环K型钢管节点在冲击荷载作用下的抗冲击工作机理,采用高性能落锤冲击试验机进行了4个内置加劲环和1个未加强K型管节点的抗冲击性能试验,得到节点的破坏模态并分析了冲击力时程曲线。建立内置加劲环K型管节点有限元数值分析模型,与试验结果对比验证模型可靠性。分析加劲环几何参数对节点冲击性能指标的影响和冲击能量的耗散机理。研究结果表明:内置加劲环可以增强节点的刚度和强度,加劲环宽度和厚度的增加均使K型管节点抵抗冲击荷载的能力有所提高,且加劲环厚度增大对提高节点抗冲击性能的效果要强于宽度;加劲环先于主管耗能,随着加劲环耗能能力达到峰值,主管开始逐步耗能并成为主要耗能构件;设置加劲环可增大K型管节点的耗能能力,加劲环宽度、厚度越大,节点的耗能量越大,主管的耗能量越少。基于K型管节点在静力荷载作用下的承载力计算公式,通过数值模拟分析得出带有加劲环节点的动力放大系数R,提出内置加劲环K型管节点抗冲击承载力计算公式,并验证公式的有效性。Abstract: To reveal the mechanism of impact resistance of an inner ring-stiffened tubular K-joint under impact loading, impact tests were carried on four inner ring-stiffened tubular K-joint specimens and one ordinary joint specimen by high performance drop-weight impact machine. The failure mode of the joint was obtained and time history curves were analyzed. The finite element numerical analysis model of inner ring-stiffened tubular K-joint was established and the reliability of the model is verified by comparison with the test data, and the influence of the stiffening ring geometric parameters on the impact resistance index of the joint and the impact energy dissipation mechanism are analyzed. Study results show that inner stiffening ring can improve the stiffness and strength of the joint, both the increase of stiffening ring width and of thickness can improve impact resistance of tubular K-joint, and the improvement of impact resistance of the joint caused by the increase of stiffening ring thickness is
-
-
表 1 试件信息表
Table 1 Specimen details and test conditions
模型编号 主管 支管 加劲环 冲击能量E/kJ 落锤质量m/kg 轴力N/kN 残余变形δ/mm D×T×L /mm d×t×l /mm Rw×Rr /mm 主管 支管(左) 支管(右) 竖向 横向 K0-0 273 8 3000 68 5 1000 0.0 0.0 31 626 412 120 −120 174 330 RK4.5-30 273 8 3000 68 5 1000 4.5 30 31 688 412 120 −120 203 305 RK4.5-50 273 8 3000 68 5 1000 4.5 50 31 688 412 120 −120 233 280 RK5.5-30 273 8 3000 68 5 1000 5.5 30 31 626 412 120 −120 211 299 RK5.5-50 273 8 3000 68 5 1000 5.5 50 31 688 412 120 −120 234 280 注:试件编号中字母“K”代表未加强试件,字母“RK”代表内置加劲环试件,数字“4.5”、“5.5”为内置加劲环的厚度,数字“30”、“50”为内置加劲环的宽度。Rr代表内置加劲环的宽度,Rw代表内置加劲环的厚度。轴力以受压为正,受拉为负。 表 2 加劲环厚度与主管壁厚比对承载力的影响
Table 2 Influence of stiffening ring thickness to chord thickness ratio on bearing capacity
模型编号 Rw/T Fu/kN Ea/kJ δ/mm Feq/kN R1=Feq/Fu K-0.8-50 0.1 162.44 28.28 91.21 310.05 1.91 K-1.6-50 0.2 162.44 27.68 87.47 316.45 1.95 K-2.4-50 0.3 162.44 26.03 81.39 319.81 1.97 K-3.2-50 0.4 162.44 25.45 79.27 321.05 1.98 K-4.0-50 0.5 162.44 23.89 70.34 329.68 2.03 K-4.8-50 0.6 162.44 22.02 65.54 335.97 2.07 K-5.6-50 0.7 162.44 21.39 61.37 348.54 2.15 K-6.4-50 0.8 162.44 21.07 59.34 355.07 2.19 K-7.2-50 0.9 162.44 19.97 55.28 361.25 2.22 K-8.0-50 1.0 162.44 19.29 52.28 368.27 2.27 注:表中模型编号第一位为加劲环厚度、第二位为加劲环宽度;Rw为加劲环厚度;Fu为静力荷载作用下的K型节点承载力;Ea为整个冲击过程主管吸收的能量;δ为主管的残余凹陷变形;Feq等效冲击承载力;R1为考虑加劲环厚度的动力放大系数。 表 3 加劲环宽度与主管直径比对承载力的影响
Table 3 Influence of stiffening ring width to chord diameter on bearing capacity
模型编号 Rr/D Fu/kN Ea/kJ δ/mm Feq/kN R2=Feq/Fu K-4.5-27 0.10 162.44 29.21 101.47 287.86 1.77 K-4.5-40 0.15 162.44 28.46 79.31 358.84 2.21 K-4.5-54 0.20 162.44 27.29 71.25 383.01 2.36 K-4.5-68 0.25 162.44 26.38 68.14 387.14 2.38 K-4.5-81 0.30 162.44 26.13 64.68 403.98 2.49 K-4.5-95 0.35 162.44 25.77 61.26 420.66 2.59 K-4.5-109 0.40 162.44 25.07 58.34 429.72 2.65 注:表中模型编号第一位为加劲环厚度、第二位为加劲环宽度;Rr为加劲环厚度;Fu为静力荷载作用下的K型节点承载力;Ea为整个冲击过程主管吸收的能量;δ为主管的残余凹陷变形;Feq等效冲击承载力;R2为考虑加劲环宽度的动力放大系数。 -
[1] 魏凯, 周聪, 徐博. 跨海桥梁高桩承台波浪冲击荷载概率模型[J]. 工程力学, 2020, 37(6): 216 − 224. doi: 10.6052/j.issn.1000-4750.2019.08.0500 Wei Kai, Zhou Cong, Xu Bo. Probability model of wave impact load on the elevated pile cap for sea-crossing bridge [J]. Engineering Mechanics, 2020, 37(6): 216 − 224. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.08.0500
[2] 杨凯. 外加劲环加强X形圆钢管节点轴向承载性能研究[D]. 北京: 北京建筑大学, 2018. Yang Kai. Research on strength of external-ring-stiffened tubular X-joints subjected to brace compressive loading [D]. Beijing: Beijing University of Civil Engineering and Architecture, 2018. (in Chinese)
[3] Gao F, Xiao Z G, Guan X Q, Zhu H P, Du G F. Dynamic behavior of CHS-SHS tubular T-joints subjected to low-velocity impact loading [J]. Engineering Structures, 2019, 183: 720 − 740. doi: 10.1016/j.engstruct.2019.01.027
[4] Yu W J, Zhao J C, Luo H X, Shi J Y, Zhang D X. Experimental study on mechanical behavior of an impacted steel tubular T-joint in fire [J]. Journal of Constructional Steel Research, 2011, 67(9): 1376 − 1385. doi: 10.1016/j.jcsr.2011.03.001
[5] 曲慧, 褚飞. 主管受撞T型管节点抗冲击性能研究[J]. 船舶力学, 2011, 15(11): 1306 − 1314. doi: 10.3969/j.issn.1007-7294.2011.11.016 Qu Hui, Chu Fei. Impact performance studies of T-tubular joint impacted on the chord [J]. Journal of Ship Mechanics, 2011, 15(11): 1306 − 1314. (in Chinese) doi: 10.3969/j.issn.1007-7294.2011.11.016
[6] 曲慧, 霍静思, 许超. T形管节点落锤动态抗冲击性能试验研究[J]. 建筑结构学报, 2013, 34(4): 65 − 73. Qu Hui, Huo Jingsi, Xu Chao. Experimental study on tubular T-joints under drop hammer impact loads [J]. Journal of Building Structures, 2013, 34(4): 65 − 73. (in Chinese)
[7] Qu H, Huo J S, Xu C, Fu F. Numerical studies on dynamic behavior of tubular T-joint subjected to impact loading [J]. International Journal of Impact Engineering, 2014, 67: 12 − 26. doi: 10.1016/j.ijimpeng.2014.01.002
[8] 李涛, 邵永波, 张季超. 内置竖向插板加强型管节点静力强度研究[J]. 工程力学, 2010, 27(4): 133 − 140. Li Tao, Shao Yongbo, Zhang Jichao. Study on static strength of tubular joints reinforced with horizontal inner vertical inner plate [J]. Engineering Mechanics, 2010, 27(4): 133 − 140. (in Chinese)
[9] 张宝峰. 受损T型圆钢管节点环口板加固承载力分析[D]. 济南: 山东科技大学, 2017. Zhang Baofeng. Analysis about the static bearing capacity of T-type RHS joint after being damaged with collar plate reinforcement [D]. Jinan: Shandong University of Science and Technology, 2017. (in Chinese)
[10] Qu H, Li A L, Huo J S, Liu Y Z. Dynamic performance of collar plate reinforced tubular T-joint with precompression chord [J]. Engineering Structures, 2017, 141: 555 − 570. doi: 10.1016/j.engstruct.2017.03.037
[11] 曲慧, 霍静思, 许超. 环口板加强后T型管节点落锤抗冲击试验研究[J]. 振动与冲击, 2013, 32(1): 108 − 112. doi: 10.3969/j.issn.1000-3835.2013.01.023 Qu Hui, Huo Jingsi, Xu Chao. Dynamic behaviors of a collar plate reinforced tubular T-joint under drop weight impact loads [J]. Journal of Vibration and Shock, 2013, 32(1): 108 − 112. (in Chinese) doi: 10.3969/j.issn.1000-3835.2013.01.023
[12] 王文杰, 邵永波, 夏辉. 环口板加固T型方钢管节点在轴压作用下极限承载力研究[J]. 工程力学, 2012, 29(6): 138 − 145. doi: 10.6052/j.issn.1000-4750.2010.09.0635 Wang Wenjie, Shao Yongbo, Xia Hui. Research on the static strength of square tubular T-joints reinforced with collar plate under axial compression. [J]. Engineering Mechanics, 2012, 29(6): 138 − 145. (in Chinese) doi: 10.6052/j.issn.1000-4750.2010.09.0635
[13] 蔡艳青, 邵永波, 岳永生. 环口板加强型T型圆钢管节点承载力的试验研究[J]. 工程力学, 2011, 28(9): 90 − 94+102. Cai Yanqing, Shao Yongbo, Yue Yongsheng. Experimental study on bearing capacity for circular tubular T-joints with collar plate reinforcement. [J]. Engineering Mechanics, 2011, 28(9): 90 − 94+102. (in Chinese)
[14] 崔安稳, 曲慧, 丛静岚. 轴力作用下局部加厚T型管节点抗冲击性能试验研究[J]. 振动与冲击, 2019, 38(15): 121 − 126. Cui Anwen, Qu Hui, Cong Jinglan. Tests for anti-impact performance of locally thickened T-shaped tubular joints under axial force [J]. Journal of Vibration and Shock, 2019, 38(15): 121 − 126. (in Chinese)
[15] 张爱林, 蔡文超, 张艳霞, 邵迪楠. 内设加劲肋空间DKT形相贯节点轴压承载力公式[J]. 工程力学, 2020, 37(9): 50 − 62. doi: 10.6052/j.issn.1000-4750.2019.10.0591 Zhang Ailin, Cai Wenchao, Zhang Yanxia, Shao Dinan. Bearing capacity formulas of multi-planar DKT-joint containing internal stiffeners under axial compression. [J]. Engineering Mechanics, 2020, 37(9): 50 − 62. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.10.0591
[16] Qu S Z, Wu X H, Sun Q. Experimental and numerical study on ultimate behaviour of high-strength steel tubular K-joints with external annular steel plates on chord circumference [J]. Engineering Structures, 2018, 165: 457 − 470. doi: 10.1016/j.engstruct.2018.03.025
[17] Qu S Z, Wu X H, Sun Q. Experimental study and theoretical analysis on the ultimate strength of high-strength-steel tubular K-Joints [J]. Thin-Walled Structures, 2018: 123.
[18] Dodaran N A, Ahmadi H, Lotfollahi-Yaghin M A. Parametric study on structural behavior of tubular K-joints under axial loading at fire-induced elevated temperatures [J]. Thin-Walled Structures, 2018, 130: 467 − 486. doi: 10.1016/j.tws.2018.06.014
[19] 王学蕾, 张延昌, 王自力. 海洋导管架平台K型节点碰撞性能研究[J]. 江苏科技大学学报(自然科学版), 2007(4): 1 − 6. Wang Xuelei, Zhang Yanchang, Wang Zili. Study on Collision behavior of K-joint in offshore jacket Platform [J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2007(4): 1 − 6. (in Chinese)
[20] Qu H, Hu Y F, Huo J S, Liu Y Z, Jiang Y. Experimental study on tubular K-joints under impact loadings [J]. Journal of Constructional Steel Research, 2015, 112: 22 − 29. doi: 10.1016/j.jcsr.2015.04.009
[21] Lu Y, Liu K, Wang Z, Tang W. Dynamic Behavior of Scaled Tubular K-joints Subjected to Impact Loads [J]. Marine Structures, 2020, 69: 102685. doi: 10.1016/j.marstruc.2019.102685
[22] Visser W. Ship collision and capacity of brace members of fixed steel offshore platforms [R]. Netherland: Visser Consultancy, 2004.
[23] Yousuf M, Uy B, Tao Z, Remennikov A, Liew J Y R. Impact behaviour of pre-compressed hollow and concrete filled mild and stainless-steel columns [J]. Journal of Constructional Steel Research, 2014, 96(5): 54 − 68.
[24] GB 50017−2017, 钢结构设计规范[S]. 北京: 中国计划出版社, 2017. GB 50017−2017, Standard for design of steel structures [S]. Beijing: China Planning Press, 2017. (in Chinese)
[25] Lu H L, Winkel G D, Yu Y, Ward J. Deformation limit for the ultimate strength of hollow section joints [C]. Melbourne, Australia: Proceedings of the sixth international symposium on tubular structures, 1994: 341 − 347.
[26] 张荣. 建筑用圆钢管构件侧向冲击响应及失效机理[D]. 哈尔滨: 哈尔滨工业大学, 2018. Zhang Rong. Dynamic response and failure mechanism of structural tubular steel members subjected to transverse impact [D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese)
[27] 王潇宇, Cristoforo D, 徐金俊, 等. 侧向冲击作用下钢管混凝土柱动力响应试验研究及计算方法[J]. 土木工程学报, 2017, 50(12): 28 − 36. Wang Xiaoyu, Cristoforo D, Xu Jinjun, et al. Dynamic response of concrete filled steel tube column under lateral impact load: experimental study and calculation method [J]. China Civil Engineering Journal, 2017, 50(12): 28 − 36. (in Chinese)
[28] ISO 19902 N, Petroleum and natural gas industries—Fixed steel offshore structures [S]. Switzerland: International Organization for Standardization, 2007.
[29] Lee M M K, Llewelyn P A. Strength prediction for ring-stiffened DT-joints in offshore jacket structures [J]. Engineering Structures, 2005, 27(3): 421 − 430. doi: 10.1016/j.engstruct.2004.11.004
[30] 赵光明. 主管受压状态下内置加劲环K形管节点抗冲击性能研究[D]. 烟台: 烟台大学, 2018. Zhao Guangming. Study on impact resistance of tubular K-joint with inner-stiffened ring under pre-axial pressure in chord [D]. Yantai: Yantai University, 2018. (in Chinese)
[31] 戴明江. 锈蚀钢筋混凝土梁的抗冲击性能研究[D]. 湖南: 湖南大学, 2015. Dai Mingjiang. Research on impact behavior of RC beams due to reinforcement corrosion [D]. Hunan: Hunan University, 2015. (in Chinese)
-
期刊类型引用(28)
1. 王朋,尤学辉,史庆轩,陶毅,戎翀,黄杰. UHPC免拆模板钢筋混凝土柱抗震性能参数分析及承载力计算. 建筑科学与工程学报. 2025(01): 41-50 . 百度学术
2. 王彦朋,张恒,聂晓梅,张芳芳. GFRP筋超高性能混凝土梁受弯性能有限元分析. 混凝土与水泥制品. 2025(02): 63-69 . 百度学术
3. 王朋,尤学辉,黄杰,史庆轩,陶毅,王秋维. 拼接成型UHPC免拆模板钢筋混凝土柱的抗震性能. 哈尔滨工业大学学报. 2024(01): 103-116 . 百度学术
4. 姜立春,李金柱. 倾斜矿体采空区非对称顶板-矿柱结构体协同承载机理. 中国有色金属学报. 2024(01): 329-343 . 百度学术
5. 秦朝刚,吴涛,刘伯权,王博,李寓. 预制UHPC-RAC组合梁受弯性能试验与理论计算. 复合材料学报. 2024(03): 1420-1435 . 百度学术
6. 王佳玮,孟醒. UHPC梁极限承载力计算方法研究. 城市建设理论研究(电子版). 2024(11): 78-80 . 百度学术
7. 卜良桃,刘港平. RPC应力-应变曲线系数与塑性损伤因子无量纲化计算模型研究. 工程力学. 2024(05): 120-133 . 本站查看
8. 秦朝刚,杜锦霖,吴涛,刘伯权. U型UHPC与再生混凝土组合梁受弯性能分析. 建筑科学. 2024(03): 110-120 . 百度学术
9. 许有胜,杨纪豪,夏樟华,孙康平. UHPC预制拼装综合管廊的抗弯性能试验. 福州大学学报(自然科学版). 2024(03): 353-361 . 百度学术
10. 常亚峰,尹文哲,侯亚鹏,曹小杉,师俊平,梁兴文. 超高性能混凝土预制板-叠合剪力墙抗震性能研究. 地震工程与工程振动. 2024(03): 96-107 . 百度学术
11. 孙永新,蔺鹏臻,杨子江. 考虑黏结-滑移效应的UHPC梁钢筋应力计算方法. 西南交通大学学报. 2024(05): 1058-1067 . 百度学术
12. 邓明科,姚昕,张阳玺,靳梦娜,曹继涛. 基于梁式试验的UHPC-高强钢筋搭接黏结性能. 复合材料学报. 2024(10): 5527-5539 . 百度学术
13. 孙永新,蔺鹏臻,杨子江,冀伟. 考虑黏结-滑移效应的UHPC梁裂缝宽度计算方法. 吉林大学学报(工学版). 2024(09): 2600-2608 . 百度学术
14. 李艳艳,贾会斌,赵川,武凯,刘平,苑宗双. 超低能耗建筑夹芯保温墙板受弯性能试验研究. 建筑科学. 2024(11): 9-18 . 百度学术
15. 刘祖强,任甭优,薛建阳. 高强型钢超高性能混凝土梁受弯性能试验研究及有限元分析. 工程力学. 2023(04): 102-115 . 本站查看
16. 刘晓银,曹锋. 第二类T形截面梁配筋设计的尺寸效应研究. 甘肃科技纵横. 2023(03): 59-62+87 . 百度学术
17. 王凌波,陈杰,杨永清,朱钊,孙宝林,舒灏. 双折线先张预应力高强混凝土Ⅰ型梁抗弯性能足尺模型试验. 中国公路学报. 2023(07): 169-179 . 百度学术
18. 李新星,周泉,李水生. 基于UHPC-钢筋错位连接的预制装配式混凝土梁抗弯性能研究. 混凝土与水泥制品. 2023(09): 47-53 . 百度学术
19. 赵盛杰,张运清,孙涛. 非一致性收缩徐变对小箱梁桥腹板竖向开裂的影响. 山东交通学院学报. 2023(04): 122-126+162 . 百度学术
20. 蔺鹏臻,赵鸿伟,马俊军. 铁路UHPC梁的正截面抗弯承载力计算公式及应用. 铁道工程学报. 2022(05): 33-38+72 . 百度学术
21. 蒋盛钢. 地铁车站装配式轨顶风道力学性能研究. 建筑结构. 2022(S2): 1673-1677 . 百度学术
22. 樊健生,王哲,杨松,陈钒,丁然. 超高性能混凝土板冲切与弯曲性能研究. 工程力学. 2021(04): 30-43 . 本站查看
23. 刘沐宇,赵刚,丁庆军,张强. 轻质超高性能混凝土(LUHPC)梁抗弯性能试验. 武汉理工大学学报(交通科学与工程版). 2021(03): 524-529 . 百度学术
24. 孙宗磊,杨少军,刘琛,高明昌,吕梁. 基于UHPC板和EPS耗能层的落石冲击力研究. 铁道标准设计. 2021(07): 88-92 . 百度学术
25. 韩东,凌俊. 超高性能混凝土在桥梁快速维护中的应用. 人民交通. 2020(03): 69+71 . 百度学术
26. 毕继红,霍琳颖,乔浩玥,赵云. 单向受拉状态下的钢纤维混凝土本构模型. 工程力学. 2020(06): 155-164 . 本站查看
27. 卜一之,刘欣益,张清华. 基于截面应力法的钢-UHPC组合板初裂荷载计算方法研究. 工程力学. 2020(10): 209-217 . 本站查看
28. 刘琛,陈应陶,杨少军,高明昌,王飞华. 兰张高铁十八里堡特大桥56 m UHPC组合简支梁设计研究. 铁道标准设计. 2020(11): 57-61 . 百度学术
其他类型引用(35)